openwrtv3/target/linux/brcm2708/patches-4.9/0173-drm-vc4-Add-DSI-driver.patch
Álvaro Fernández Rojas baad22eed3 brcm2708: update linux 4.9 patches to latest version
As usual these patches were extracted and rebased from the raspberry pi repo:
https://github.com/raspberrypi/linux/tree/rpi-4.9.y

- Remove led1 from diag.sh for RPi3 since it causes boot issues.
- Fix modules.mk typos.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2017-03-04 19:37:50 +01:00

1817 lines
54 KiB
Diff

From 38ea3f3665eaa9deedc3588196fe9ba9bb4032ec Mon Sep 17 00:00:00 2001
From: Eric Anholt <eric@anholt.net>
Date: Wed, 10 Feb 2016 11:42:32 -0800
Subject: [PATCH] drm/vc4: Add DSI driver
The DSI0 and DSI1 blocks on the 2835 are related hardware blocks.
Some registers move around, and the featureset is slightly different,
as DSI1 (the 4-lane DSI) is a later version of the hardware block.
This driver doesn't yet enable DSI0, since we don't have any hardware
to test against, but it does put a lot of the register definitions and
code in place.
Signed-off-by: Eric Anholt <eric@anholt.net>
---
drivers/gpu/drm/vc4/Kconfig | 2 +
drivers/gpu/drm/vc4/Makefile | 1 +
drivers/gpu/drm/vc4/vc4_debugfs.c | 1 +
drivers/gpu/drm/vc4/vc4_drv.c | 1 +
drivers/gpu/drm/vc4/vc4_drv.h | 5 +
drivers/gpu/drm/vc4/vc4_dsi.c | 1725 +++++++++++++++++++++++++++++++++++++
6 files changed, 1735 insertions(+)
create mode 100644 drivers/gpu/drm/vc4/vc4_dsi.c
--- a/drivers/gpu/drm/vc4/Kconfig
+++ b/drivers/gpu/drm/vc4/Kconfig
@@ -2,10 +2,12 @@ config DRM_VC4
tristate "Broadcom VC4 Graphics"
depends on ARCH_BCM2835 || COMPILE_TEST
depends on DRM
+ depends on COMMON_CLK
select DRM_KMS_HELPER
select DRM_KMS_CMA_HELPER
select DRM_GEM_CMA_HELPER
select DRM_PANEL
+ select DRM_MIPI_DSI
help
Choose this option if you have a system that has a Broadcom
VC4 GPU, such as the Raspberry Pi or other BCM2708/BCM2835.
--- a/drivers/gpu/drm/vc4/Makefile
+++ b/drivers/gpu/drm/vc4/Makefile
@@ -8,6 +8,7 @@ vc4-y := \
vc4_crtc.o \
vc4_drv.o \
vc4_dpi.o \
+ vc4_dsi.o \
vc4_firmware_kms.o \
vc4_kms.o \
vc4_gem.o \
--- a/drivers/gpu/drm/vc4/vc4_debugfs.c
+++ b/drivers/gpu/drm/vc4/vc4_debugfs.c
@@ -18,6 +18,7 @@
static const struct drm_info_list vc4_debugfs_list[] = {
{"bo_stats", vc4_bo_stats_debugfs, 0},
{"dpi_regs", vc4_dpi_debugfs_regs, 0},
+ {"dsi1_regs", vc4_dsi_debugfs_regs, 0, (void *)(uintptr_t)1},
{"hdmi_regs", vc4_hdmi_debugfs_regs, 0},
{"vec_regs", vc4_vec_debugfs_regs, 0},
{"hvs_regs", vc4_hvs_debugfs_regs, 0},
--- a/drivers/gpu/drm/vc4/vc4_drv.c
+++ b/drivers/gpu/drm/vc4/vc4_drv.c
@@ -296,6 +296,7 @@ static struct platform_driver *const com
&vc4_hdmi_driver,
&vc4_vec_driver,
&vc4_dpi_driver,
+ &vc4_dsi_driver,
&vc4_hvs_driver,
&vc4_crtc_driver,
&vc4_firmware_kms_driver,
--- a/drivers/gpu/drm/vc4/vc4_drv.h
+++ b/drivers/gpu/drm/vc4/vc4_drv.h
@@ -20,6 +20,7 @@ struct vc4_dev {
struct vc4_crtc *crtc[3];
struct vc4_v3d *v3d;
struct vc4_dpi *dpi;
+ struct vc4_dsi *dsi1;
struct vc4_vec *vec;
struct drm_fbdev_cma *fbdev;
@@ -468,6 +469,10 @@ void __iomem *vc4_ioremap_regs(struct pl
extern struct platform_driver vc4_dpi_driver;
int vc4_dpi_debugfs_regs(struct seq_file *m, void *unused);
+/* vc4_dsi.c */
+extern struct platform_driver vc4_dsi_driver;
+int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused);
+
/* vc4_firmware_kms.c */
extern struct platform_driver vc4_firmware_kms_driver;
void vc4_fkms_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file);
--- /dev/null
+++ b/drivers/gpu/drm/vc4/vc4_dsi.c
@@ -0,0 +1,1725 @@
+/*
+ * Copyright (C) 2016 Broadcom
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/**
+ * DOC: VC4 DSI0/DSI1 module
+ *
+ * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
+ * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
+ * controller.
+ *
+ * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
+ * while the compute module brings both DSI0 and DSI1 out.
+ *
+ * This driver has been tested for DSI1 video-mode display only
+ * currently, with most of the information necessary for DSI0
+ * hopefully present.
+ */
+
+#include "drm_atomic_helper.h"
+#include "drm_crtc_helper.h"
+#include "drm_edid.h"
+#include "drm_mipi_dsi.h"
+#include "drm_panel.h"
+#include "linux/clk.h"
+#include "linux/clk-provider.h"
+#include "linux/completion.h"
+#include "linux/component.h"
+#include "linux/dmaengine.h"
+#include "linux/i2c.h"
+#include "linux/of_address.h"
+#include "linux/of_platform.h"
+#include "linux/pm_runtime.h"
+#include "vc4_drv.h"
+#include "vc4_regs.h"
+
+#define DSI_CMD_FIFO_DEPTH 16
+#define DSI_PIX_FIFO_DEPTH 256
+#define DSI_PIX_FIFO_WIDTH 4
+
+#define DSI0_CTRL 0x00
+
+/* Command packet control. */
+#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
+#define DSI1_TXPKT1C 0x04
+# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
+# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
+# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
+# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
+
+# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
+# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
+/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
+# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
+/* Primary display where cmdfifo provides part of the payload and
+ * pixelvalve the rest.
+ */
+# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
+/* Secondary display where cmdfifo provides part of the payload and
+ * pixfifo the rest.
+ */
+# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
+
+# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
+# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
+
+# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
+# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
+/* Command only. Uses TXPKT1H and DISPLAY_NO */
+# define DSI_TXPKT1C_CMD_CTRL_TX 0
+/* Command with BTA for either ack or read data. */
+# define DSI_TXPKT1C_CMD_CTRL_RX 1
+/* Trigger according to TRIG_CMD */
+# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
+/* BTA alone for getting error status after a command, or a TE trigger
+ * without a previous command.
+ */
+# define DSI_TXPKT1C_CMD_CTRL_BTA 3
+
+# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
+# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
+# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
+# define DSI_TXPKT1C_CMD_EN BIT(0)
+
+/* Command packet header. */
+#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
+#define DSI1_TXPKT1H 0x08
+# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
+# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
+# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
+# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
+# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
+# define DSI_TXPKT1H_BC_DT_SHIFT 0
+
+#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
+#define DSI1_RXPKT1H 0x14
+# define DSI_RXPKT1H_CRC_ERR BIT(31)
+# define DSI_RXPKT1H_DET_ERR BIT(30)
+# define DSI_RXPKT1H_ECC_ERR BIT(29)
+# define DSI_RXPKT1H_COR_ERR BIT(28)
+# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
+# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
+/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
+# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
+# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
+/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
+# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
+# define DSI_RXPKT1H_SHORT_1_SHIFT 16
+# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
+# define DSI_RXPKT1H_SHORT_0_SHIFT 8
+# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
+# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
+
+#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
+#define DSI1_RXPKT2H 0x18
+# define DSI_RXPKT1H_DET_ERR BIT(30)
+# define DSI_RXPKT1H_ECC_ERR BIT(29)
+# define DSI_RXPKT1H_COR_ERR BIT(28)
+# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
+# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
+# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
+# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
+# define DSI_RXPKT1H_DT_SHIFT 0
+
+#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
+#define DSI1_TXPKT_CMD_FIFO 0x1c
+
+#define DSI0_DISP0_CTRL 0x18
+# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
+# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
+# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
+# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
+# define DSI_DISP0_LP_STOP_DISABLE 0
+# define DSI_DISP0_LP_STOP_PERLINE 1
+# define DSI_DISP0_LP_STOP_PERFRAME 2
+
+/* Transmit RGB pixels and null packets only during HACTIVE, instead
+ * of going to LP-STOP.
+ */
+# define DSI_DISP_HACTIVE_NULL BIT(10)
+/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
+# define DSI_DISP_VBLP_CTRL BIT(9)
+/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
+# define DSI_DISP_HFP_CTRL BIT(8)
+/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
+# define DSI_DISP_HBP_CTRL BIT(7)
+# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
+# define DSI_DISP0_CHANNEL_SHIFT 5
+/* Enables end events for HSYNC/VSYNC, not just start events. */
+# define DSI_DISP0_ST_END BIT(4)
+# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
+# define DSI_DISP0_PFORMAT_SHIFT 2
+# define DSI_PFORMAT_RGB565 0
+# define DSI_PFORMAT_RGB666_PACKED 1
+# define DSI_PFORMAT_RGB666 2
+# define DSI_PFORMAT_RGB888 3
+/* Default is VIDEO mode. */
+# define DSI_DISP0_COMMAND_MODE BIT(1)
+# define DSI_DISP0_ENABLE BIT(0)
+
+#define DSI0_DISP1_CTRL 0x1c
+#define DSI1_DISP1_CTRL 0x2c
+/* Format of the data written to TXPKT_PIX_FIFO. */
+# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
+# define DSI_DISP1_PFORMAT_SHIFT 1
+# define DSI_DISP1_PFORMAT_16BIT 0
+# define DSI_DISP1_PFORMAT_24BIT 1
+# define DSI_DISP1_PFORMAT_32BIT_LE 2
+# define DSI_DISP1_PFORMAT_32BIT_BE 3
+
+/* DISP1 is always command mode. */
+# define DSI_DISP1_ENABLE BIT(0)
+
+#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
+
+#define DSI0_INT_STAT 0x24
+#define DSI0_INT_EN 0x28
+# define DSI1_INT_PHY_D3_ULPS BIT(30)
+# define DSI1_INT_PHY_D3_STOP BIT(29)
+# define DSI1_INT_PHY_D2_ULPS BIT(28)
+# define DSI1_INT_PHY_D2_STOP BIT(27)
+# define DSI1_INT_PHY_D1_ULPS BIT(26)
+# define DSI1_INT_PHY_D1_STOP BIT(25)
+# define DSI1_INT_PHY_D0_ULPS BIT(24)
+# define DSI1_INT_PHY_D0_STOP BIT(23)
+# define DSI1_INT_FIFO_ERR BIT(22)
+# define DSI1_INT_PHY_DIR_RTF BIT(21)
+# define DSI1_INT_PHY_RXLPDT BIT(20)
+# define DSI1_INT_PHY_RXTRIG BIT(19)
+# define DSI1_INT_PHY_D0_LPDT BIT(18)
+# define DSI1_INT_PHY_DIR_FTR BIT(17)
+
+/* Signaled when the clock lane enters the given state. */
+# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
+# define DSI1_INT_PHY_CLOCK_HS BIT(15)
+# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
+
+/* Signaled on timeouts */
+# define DSI1_INT_PR_TO BIT(13)
+# define DSI1_INT_TA_TO BIT(12)
+# define DSI1_INT_LPRX_TO BIT(11)
+# define DSI1_INT_HSTX_TO BIT(10)
+
+/* Contention on a line when trying to drive the line low */
+# define DSI1_INT_ERR_CONT_LP1 BIT(9)
+# define DSI1_INT_ERR_CONT_LP0 BIT(8)
+
+/* Control error: incorrect line state sequence on data lane 0. */
+# define DSI1_INT_ERR_CONTROL BIT(7)
+/* LPDT synchronization error (bits received not a multiple of 8. */
+
+# define DSI1_INT_ERR_SYNC_ESC BIT(6)
+/* Signaled after receiving an error packet from the display in
+ * response to a read.
+ */
+# define DSI1_INT_RXPKT2 BIT(5)
+/* Signaled after receiving a packet. The header and optional short
+ * response will be in RXPKT1H, and a long response will be in the
+ * RXPKT_FIFO.
+ */
+# define DSI1_INT_RXPKT1 BIT(4)
+# define DSI1_INT_TXPKT2_DONE BIT(3)
+# define DSI1_INT_TXPKT2_END BIT(2)
+/* Signaled after all repeats of TXPKT1 are transferred. */
+# define DSI1_INT_TXPKT1_DONE BIT(1)
+/* Signaled after each TXPKT1 repeat is scheduled. */
+# define DSI1_INT_TXPKT1_END BIT(0)
+
+#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
+ DSI1_INT_ERR_CONTROL | \
+ DSI1_INT_ERR_CONT_LP0 | \
+ DSI1_INT_ERR_CONT_LP1 | \
+ DSI1_INT_HSTX_TO | \
+ DSI1_INT_LPRX_TO | \
+ DSI1_INT_TA_TO | \
+ DSI1_INT_PR_TO)
+
+#define DSI0_STAT 0x2c
+#define DSI0_HSTX_TO_CNT 0x30
+#define DSI0_LPRX_TO_CNT 0x34
+#define DSI0_TA_TO_CNT 0x38
+#define DSI0_PR_TO_CNT 0x3c
+#define DSI0_PHYC 0x40
+# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
+# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
+# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
+# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
+# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
+# define DSI1_PHYC_CLANE_ULPS BIT(17)
+# define DSI1_PHYC_CLANE_ENABLE BIT(16)
+# define DSI_PHYC_DLANE3_ULPS BIT(13)
+# define DSI_PHYC_DLANE3_ENABLE BIT(12)
+# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
+# define DSI0_PHYC_CLANE_ULPS BIT(9)
+# define DSI_PHYC_DLANE2_ULPS BIT(9)
+# define DSI0_PHYC_CLANE_ENABLE BIT(8)
+# define DSI_PHYC_DLANE2_ENABLE BIT(8)
+# define DSI_PHYC_DLANE1_ULPS BIT(5)
+# define DSI_PHYC_DLANE1_ENABLE BIT(4)
+# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
+# define DSI_PHYC_DLANE0_ULPS BIT(1)
+# define DSI_PHYC_DLANE0_ENABLE BIT(0)
+
+#define DSI0_HS_CLT0 0x44
+#define DSI0_HS_CLT1 0x48
+#define DSI0_HS_CLT2 0x4c
+#define DSI0_HS_DLT3 0x50
+#define DSI0_HS_DLT4 0x54
+#define DSI0_HS_DLT5 0x58
+#define DSI0_HS_DLT6 0x5c
+#define DSI0_HS_DLT7 0x60
+
+#define DSI0_PHY_AFEC0 0x64
+# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
+# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
+# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
+# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
+# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
+# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
+# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
+# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
+# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
+# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
+# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
+# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
+# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
+# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
+# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
+# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
+# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
+# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
+# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
+# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
+# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
+# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
+# define DSI1_PHY_AFEC0_RESET BIT(13)
+# define DSI1_PHY_AFEC0_PD BIT(12)
+# define DSI0_PHY_AFEC0_RESET BIT(11)
+# define DSI1_PHY_AFEC0_PD_BG BIT(11)
+# define DSI0_PHY_AFEC0_PD BIT(10)
+# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
+# define DSI0_PHY_AFEC0_PD_BG BIT(9)
+# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
+# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
+# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
+# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
+# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
+# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
+# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
+
+#define DSI0_PHY_AFEC1 0x68
+# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
+# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
+# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
+# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
+# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
+# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
+
+#define DSI0_TST_SEL 0x6c
+#define DSI0_TST_MON 0x70
+#define DSI0_ID 0x74
+# define DSI_ID_VALUE 0x00647369
+
+#define DSI1_CTRL 0x00
+# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
+# define DSI_CTRL_HS_CLKC_SHIFT 14
+# define DSI_CTRL_HS_CLKC_BYTE 0
+# define DSI_CTRL_HS_CLKC_DDR2 1
+# define DSI_CTRL_HS_CLKC_DDR 2
+
+# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
+# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
+# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
+# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
+# define DSI_CTRL_CAL_BYTE BIT(9)
+# define DSI_CTRL_INV_BYTE BIT(8)
+# define DSI_CTRL_CLR_LDF BIT(7)
+# define DSI0_CTRL_CLR_PBCF BIT(6)
+# define DSI1_CTRL_CLR_RXF BIT(6)
+# define DSI0_CTRL_CLR_CPBCF BIT(5)
+# define DSI1_CTRL_CLR_PDF BIT(5)
+# define DSI0_CTRL_CLR_PDF BIT(4)
+# define DSI1_CTRL_CLR_CDF BIT(4)
+# define DSI0_CTRL_CLR_CDF BIT(3)
+# define DSI0_CTRL_CTRL2 BIT(2)
+# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
+# define DSI0_CTRL_CTRL1 BIT(1)
+# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
+# define DSI0_CTRL_CTRL0 BIT(0)
+# define DSI1_CTRL_EN BIT(0)
+# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
+ DSI0_CTRL_CLR_PBCF | \
+ DSI0_CTRL_CLR_CPBCF | \
+ DSI0_CTRL_CLR_PDF | \
+ DSI0_CTRL_CLR_CDF)
+# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
+ DSI1_CTRL_CLR_RXF | \
+ DSI1_CTRL_CLR_PDF | \
+ DSI1_CTRL_CLR_CDF)
+
+#define DSI1_TXPKT2C 0x0c
+#define DSI1_TXPKT2H 0x10
+#define DSI1_TXPKT_PIX_FIFO 0x20
+#define DSI1_RXPKT_FIFO 0x24
+#define DSI1_DISP0_CTRL 0x28
+#define DSI1_INT_STAT 0x30
+#define DSI1_INT_EN 0x34
+/* State reporting bits. These mostly behave like INT_STAT, where
+ * writing a 1 clears the bit.
+ */
+#define DSI1_STAT 0x38
+# define DSI1_STAT_PHY_D3_ULPS BIT(31)
+# define DSI1_STAT_PHY_D3_STOP BIT(30)
+# define DSI1_STAT_PHY_D2_ULPS BIT(29)
+# define DSI1_STAT_PHY_D2_STOP BIT(28)
+# define DSI1_STAT_PHY_D1_ULPS BIT(27)
+# define DSI1_STAT_PHY_D1_STOP BIT(26)
+# define DSI1_STAT_PHY_D0_ULPS BIT(25)
+# define DSI1_STAT_PHY_D0_STOP BIT(24)
+# define DSI1_STAT_FIFO_ERR BIT(23)
+# define DSI1_STAT_PHY_RXLPDT BIT(22)
+# define DSI1_STAT_PHY_RXTRIG BIT(21)
+# define DSI1_STAT_PHY_D0_LPDT BIT(20)
+/* Set when in forward direction */
+# define DSI1_STAT_PHY_DIR BIT(19)
+# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
+# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
+# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
+# define DSI1_STAT_PR_TO BIT(15)
+# define DSI1_STAT_TA_TO BIT(14)
+# define DSI1_STAT_LPRX_TO BIT(13)
+# define DSI1_STAT_HSTX_TO BIT(12)
+# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
+# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
+# define DSI1_STAT_ERR_CONTROL BIT(9)
+# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
+# define DSI1_STAT_RXPKT2 BIT(7)
+# define DSI1_STAT_RXPKT1 BIT(6)
+# define DSI1_STAT_TXPKT2_BUSY BIT(5)
+# define DSI1_STAT_TXPKT2_DONE BIT(4)
+# define DSI1_STAT_TXPKT2_END BIT(3)
+# define DSI1_STAT_TXPKT1_BUSY BIT(2)
+# define DSI1_STAT_TXPKT1_DONE BIT(1)
+# define DSI1_STAT_TXPKT1_END BIT(0)
+
+#define DSI1_HSTX_TO_CNT 0x3c
+#define DSI1_LPRX_TO_CNT 0x40
+#define DSI1_TA_TO_CNT 0x44
+#define DSI1_PR_TO_CNT 0x48
+#define DSI1_PHYC 0x4c
+
+#define DSI1_HS_CLT0 0x50
+# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
+# define DSI_HS_CLT0_CZERO_SHIFT 18
+# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
+# define DSI_HS_CLT0_CPRE_SHIFT 9
+# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
+# define DSI_HS_CLT0_CPREP_SHIFT 0
+
+#define DSI1_HS_CLT1 0x54
+# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
+# define DSI_HS_CLT1_CTRAIL_SHIFT 9
+# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
+# define DSI_HS_CLT1_CPOST_SHIFT 0
+
+#define DSI1_HS_CLT2 0x58
+# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
+# define DSI_HS_CLT2_WUP_SHIFT 0
+
+#define DSI1_HS_DLT3 0x5c
+# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
+# define DSI_HS_DLT3_EXIT_SHIFT 18
+# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
+# define DSI_HS_DLT3_ZERO_SHIFT 9
+# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
+# define DSI_HS_DLT3_PRE_SHIFT 0
+
+#define DSI1_HS_DLT4 0x60
+# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
+# define DSI_HS_DLT4_ANLAT_SHIFT 18
+# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
+# define DSI_HS_DLT4_TRAIL_SHIFT 9
+# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
+# define DSI_HS_DLT4_LPX_SHIFT 0
+
+#define DSI1_HS_DLT5 0x64
+# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
+# define DSI_HS_DLT5_INIT_SHIFT 0
+
+#define DSI1_HS_DLT6 0x68
+# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
+# define DSI_HS_DLT6_TA_GET_SHIFT 24
+# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
+# define DSI_HS_DLT6_TA_SURE_SHIFT 16
+# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
+# define DSI_HS_DLT6_TA_GO_SHIFT 8
+# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
+# define DSI_HS_DLT6_LP_LPX_SHIFT 0
+
+#define DSI1_HS_DLT7 0x6c
+# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
+# define DSI_HS_DLT7_LP_WUP_SHIFT 0
+
+#define DSI1_PHY_AFEC0 0x70
+
+#define DSI1_PHY_AFEC1 0x74
+# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
+# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
+# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
+# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
+# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
+# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
+# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
+# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
+# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
+# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
+
+#define DSI1_TST_SEL 0x78
+#define DSI1_TST_MON 0x7c
+#define DSI1_PHY_TST1 0x80
+#define DSI1_PHY_TST2 0x84
+#define DSI1_PHY_FIFO_STAT 0x88
+/* Actually, all registers in the range that aren't otherwise claimed
+ * will return the ID.
+ */
+#define DSI1_ID 0x8c
+
+/* General DSI hardware state. */
+struct vc4_dsi {
+ struct platform_device *pdev;
+
+ struct mipi_dsi_host dsi_host;
+ struct drm_encoder *encoder;
+ struct drm_connector *connector;
+ struct drm_panel *panel;
+
+ void __iomem *regs;
+
+ struct dma_chan *reg_dma_chan;
+ dma_addr_t reg_dma_paddr;
+ u32 *reg_dma_mem;
+ dma_addr_t reg_paddr;
+
+ /* Whether we're on bcm2835's DSI0 or DSI1. */
+ int port;
+
+ /* DSI channel for the panel we're connected to. */
+ u32 channel;
+ u32 lanes;
+ enum mipi_dsi_pixel_format format;
+ u32 mode_flags;
+
+ /* Input clock from CPRMAN to the digital PHY, for the DSI
+ * escape clock.
+ */
+ struct clk *escape_clock;
+
+ /* Input clock to the analog PHY, used to generate the DSI bit
+ * clock.
+ */
+ struct clk *pll_phy_clock;
+
+ /* HS Clocks generated within the DSI analog PHY. */
+ struct clk_fixed_factor phy_clocks[3];
+
+ struct clk_onecell_data clk_onecell;
+
+ /* Pixel clock output to the pixelvalve, generated from the HS
+ * clock.
+ */
+ struct clk *pixel_clock;
+
+ struct completion xfer_completion;
+ int xfer_result;
+};
+
+#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
+
+static inline void
+dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
+{
+ struct dma_chan *chan = dsi->reg_dma_chan;
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+ int ret;
+
+ /* DSI0 should be able to write normally. */
+ if (!chan) {
+ writel(val, dsi->regs + offset);
+ return;
+ }
+
+ *dsi->reg_dma_mem = val;
+
+ tx = chan->device->device_prep_dma_memcpy(chan,
+ dsi->reg_paddr + offset,
+ dsi->reg_dma_paddr,
+ 4, 0);
+ if (!tx) {
+ DRM_ERROR("Failed to set up DMA register write\n");
+ return;
+ }
+
+ cookie = tx->tx_submit(tx);
+ ret = dma_submit_error(cookie);
+ if (ret) {
+ DRM_ERROR("Failed to submit DMA: %d\n", ret);
+ return;
+ }
+ ret = dma_sync_wait(chan, cookie);
+ if (ret)
+ DRM_ERROR("Failed to wait for DMA: %d\n", ret);
+}
+
+#define DSI_READ(offset) readl(dsi->regs + (offset))
+#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
+#define DSI_PORT_READ(offset) \
+ DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
+#define DSI_PORT_WRITE(offset, val) \
+ DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
+#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
+
+/* VC4 DSI encoder KMS struct */
+struct vc4_dsi_encoder {
+ struct vc4_encoder base;
+ struct vc4_dsi *dsi;
+};
+
+static inline struct vc4_dsi_encoder *
+to_vc4_dsi_encoder(struct drm_encoder *encoder)
+{
+ return container_of(encoder, struct vc4_dsi_encoder, base.base);
+}
+
+/* VC4 DSI connector KMS struct */
+struct vc4_dsi_connector {
+ struct drm_connector base;
+ struct vc4_dsi *dsi;
+};
+
+static inline struct vc4_dsi_connector *
+to_vc4_dsi_connector(struct drm_connector *connector)
+{
+ return container_of(connector, struct vc4_dsi_connector, base);
+}
+
+#define DSI_REG(reg) { reg, #reg }
+static const struct {
+ u32 reg;
+ const char *name;
+} dsi0_regs[] = {
+ DSI_REG(DSI0_CTRL),
+ DSI_REG(DSI0_STAT),
+ DSI_REG(DSI0_HSTX_TO_CNT),
+ DSI_REG(DSI0_LPRX_TO_CNT),
+ DSI_REG(DSI0_TA_TO_CNT),
+ DSI_REG(DSI0_PR_TO_CNT),
+ DSI_REG(DSI0_DISP0_CTRL),
+ DSI_REG(DSI0_DISP1_CTRL),
+ DSI_REG(DSI0_INT_STAT),
+ DSI_REG(DSI0_INT_EN),
+ DSI_REG(DSI0_PHYC),
+ DSI_REG(DSI0_HS_CLT0),
+ DSI_REG(DSI0_HS_CLT1),
+ DSI_REG(DSI0_HS_CLT2),
+ DSI_REG(DSI0_HS_DLT3),
+ DSI_REG(DSI0_HS_DLT4),
+ DSI_REG(DSI0_HS_DLT5),
+ DSI_REG(DSI0_HS_DLT6),
+ DSI_REG(DSI0_HS_DLT7),
+ DSI_REG(DSI0_PHY_AFEC0),
+ DSI_REG(DSI0_PHY_AFEC1),
+ DSI_REG(DSI0_ID),
+};
+
+static const struct {
+ u32 reg;
+ const char *name;
+} dsi1_regs[] = {
+ DSI_REG(DSI1_CTRL),
+ DSI_REG(DSI1_STAT),
+ DSI_REG(DSI1_HSTX_TO_CNT),
+ DSI_REG(DSI1_LPRX_TO_CNT),
+ DSI_REG(DSI1_TA_TO_CNT),
+ DSI_REG(DSI1_PR_TO_CNT),
+ DSI_REG(DSI1_DISP0_CTRL),
+ DSI_REG(DSI1_DISP1_CTRL),
+ DSI_REG(DSI1_INT_STAT),
+ DSI_REG(DSI1_INT_EN),
+ DSI_REG(DSI1_PHYC),
+ DSI_REG(DSI1_HS_CLT0),
+ DSI_REG(DSI1_HS_CLT1),
+ DSI_REG(DSI1_HS_CLT2),
+ DSI_REG(DSI1_HS_DLT3),
+ DSI_REG(DSI1_HS_DLT4),
+ DSI_REG(DSI1_HS_DLT5),
+ DSI_REG(DSI1_HS_DLT6),
+ DSI_REG(DSI1_HS_DLT7),
+ DSI_REG(DSI1_PHY_AFEC0),
+ DSI_REG(DSI1_PHY_AFEC1),
+ DSI_REG(DSI1_ID),
+};
+
+static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
+{
+ int i;
+
+ if (dsi->port == 0) {
+ for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
+ DRM_INFO("0x%04x (%s): 0x%08x\n",
+ dsi0_regs[i].reg, dsi0_regs[i].name,
+ DSI_READ(dsi0_regs[i].reg));
+ }
+ } else {
+ for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
+ DRM_INFO("0x%04x (%s): 0x%08x\n",
+ dsi1_regs[i].reg, dsi1_regs[i].name,
+ DSI_READ(dsi1_regs[i].reg));
+ }
+ }
+}
+
+#ifdef CONFIG_DEBUG_FS
+int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
+{
+ struct drm_info_node *node = (struct drm_info_node *)m->private;
+ struct drm_device *drm = node->minor->dev;
+ struct vc4_dev *vc4 = to_vc4_dev(drm);
+ int dsi_index = (uintptr_t)node->info_ent->data;
+ struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
+ int i;
+
+ if (!dsi)
+ return 0;
+
+ if (dsi->port == 0) {
+ for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
+ seq_printf(m, "0x%04x (%s): 0x%08x\n",
+ dsi0_regs[i].reg, dsi0_regs[i].name,
+ DSI_READ(dsi0_regs[i].reg));
+ }
+ } else {
+ for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
+ seq_printf(m, "0x%04x (%s): 0x%08x\n",
+ dsi1_regs[i].reg, dsi1_regs[i].name,
+ DSI_READ(dsi1_regs[i].reg));
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static enum drm_connector_status
+vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
+{
+ struct vc4_dsi_connector *vc4_connector =
+ to_vc4_dsi_connector(connector);
+ struct vc4_dsi *dsi = vc4_connector->dsi;
+
+ if (dsi->panel)
+ return connector_status_connected;
+ else
+ return connector_status_disconnected;
+}
+
+static void vc4_dsi_connector_destroy(struct drm_connector *connector)
+{
+ drm_connector_unregister(connector);
+ drm_connector_cleanup(connector);
+}
+
+static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
+{
+ struct vc4_dsi_connector *vc4_connector =
+ to_vc4_dsi_connector(connector);
+ struct vc4_dsi *dsi = vc4_connector->dsi;
+
+ if (dsi->panel)
+ return drm_panel_get_modes(dsi->panel);
+
+ return 0;
+}
+
+static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
+ .dpms = drm_atomic_helper_connector_dpms,
+ .detect = vc4_dsi_connector_detect,
+ .fill_modes = drm_helper_probe_single_connector_modes,
+ .destroy = vc4_dsi_connector_destroy,
+ .reset = drm_atomic_helper_connector_reset,
+ .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
+ .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
+};
+
+static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
+ .get_modes = vc4_dsi_connector_get_modes,
+};
+
+static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
+ struct vc4_dsi *dsi)
+{
+ struct drm_connector *connector = NULL;
+ struct vc4_dsi_connector *dsi_connector;
+ int ret = 0;
+
+ dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
+ GFP_KERNEL);
+ if (!dsi_connector) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+ connector = &dsi_connector->base;
+
+ dsi_connector->dsi = dsi;
+
+ drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
+ DRM_MODE_CONNECTOR_DSI);
+ drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
+
+ connector->polled = 0;
+ connector->interlace_allowed = 0;
+ connector->doublescan_allowed = 0;
+
+ drm_mode_connector_attach_encoder(connector, dsi->encoder);
+
+ return connector;
+
+fail:
+ if (connector)
+ vc4_dsi_connector_destroy(connector);
+
+ return ERR_PTR(ret);
+}
+
+static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
+{
+ drm_encoder_cleanup(encoder);
+}
+
+static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
+ .destroy = vc4_dsi_encoder_destroy,
+};
+
+static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
+{
+ u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
+
+ if (latch)
+ afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
+ else
+ afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
+
+ DSI_PORT_WRITE(PHY_AFEC0, afec0);
+}
+
+/* Enters or exits Ultra Low Power State. */
+static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
+{
+ bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
+ u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
+ DSI_PHYC_DLANE0_ULPS |
+ (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
+ (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
+ (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
+ u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
+ DSI1_STAT_PHY_D0_ULPS |
+ (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
+ (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
+ (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
+ u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
+ DSI1_STAT_PHY_D0_STOP |
+ (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
+ (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
+ (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
+ int ret;
+
+ DSI_PORT_WRITE(STAT, stat_ulps);
+ DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
+ ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
+ if (ret) {
+ dev_warn(&dsi->pdev->dev,
+ "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
+ DSI_PORT_READ(STAT));
+ DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
+ vc4_dsi_latch_ulps(dsi, false);
+ return;
+ }
+
+ /* The DSI module can't be disabled while the module is
+ * generating ULPS state. So, to be able to disable the
+ * module, we have the AFE latch the ULPS state and continue
+ * on to having the module enter STOP.
+ */
+ vc4_dsi_latch_ulps(dsi, ulps);
+
+ DSI_PORT_WRITE(STAT, stat_stop);
+ DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
+ ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
+ if (ret) {
+ dev_warn(&dsi->pdev->dev,
+ "Timeout waiting for DSI STOP entry: STAT 0x%08x",
+ DSI_PORT_READ(STAT));
+ DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
+ return;
+ }
+}
+
+static u32
+dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
+{
+ /* The HS timings have to be rounded up to a multiple of 8
+ * because we're using the byte clock.
+ */
+ return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
+}
+
+/* ESC always runs at 100Mhz. */
+#define ESC_TIME_NS 10
+
+static u32
+dsi_esc_timing(u32 ns)
+{
+ return DIV_ROUND_UP(ns, ESC_TIME_NS);
+}
+
+static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
+{
+ struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
+ struct vc4_dsi *dsi = vc4_encoder->dsi;
+ struct device *dev = &dsi->pdev->dev;
+
+ drm_panel_disable(dsi->panel);
+
+ vc4_dsi_ulps(dsi, true);
+
+ drm_panel_unprepare(dsi->panel);
+
+ clk_disable_unprepare(dsi->pll_phy_clock);
+ clk_disable_unprepare(dsi->escape_clock);
+ clk_disable_unprepare(dsi->pixel_clock);
+
+ pm_runtime_put(dev);
+}
+
+static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
+{
+ struct drm_display_mode *mode = &encoder->crtc->mode;
+ struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
+ struct vc4_dsi *dsi = vc4_encoder->dsi;
+ struct device *dev = &dsi->pdev->dev;
+ u32 format = 0, divider = 0;
+ bool debug_dump_regs = false;
+ unsigned long hs_clock;
+ u32 ui_ns;
+ /* Minimum LP state duration in escape clock cycles. */
+ u32 lpx = dsi_esc_timing(60);
+ unsigned long pixel_clock_hz = mode->clock * 1000;
+ unsigned long dsip_clock;
+ unsigned long phy_clock;
+ int ret;
+
+ ret = pm_runtime_get_sync(dev);
+ if (ret) {
+ DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
+ return;
+ }
+
+ ret = drm_panel_prepare(dsi->panel);
+ if (ret) {
+ DRM_ERROR("Panel failed to prepare\n");
+ return;
+ }
+
+ if (debug_dump_regs) {
+ DRM_INFO("DSI regs before:\n");
+ vc4_dsi_dump_regs(dsi);
+ }
+
+ switch (dsi->format) {
+ case MIPI_DSI_FMT_RGB888:
+ format = DSI_PFORMAT_RGB888;
+ divider = 24 / dsi->lanes;
+ break;
+ case MIPI_DSI_FMT_RGB666:
+ format = DSI_PFORMAT_RGB666;
+ divider = 24 / dsi->lanes;
+ break;
+ case MIPI_DSI_FMT_RGB666_PACKED:
+ format = DSI_PFORMAT_RGB666_PACKED;
+ divider = 18 / dsi->lanes;
+ break;
+ case MIPI_DSI_FMT_RGB565:
+ format = DSI_PFORMAT_RGB565;
+ divider = 16 / dsi->lanes;
+ break;
+ }
+
+ phy_clock = pixel_clock_hz * divider;
+ ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
+ if (ret) {
+ dev_err(&dsi->pdev->dev,
+ "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
+ }
+
+ /* Reset the DSI and all its fifos. */
+ DSI_PORT_WRITE(CTRL,
+ DSI_CTRL_SOFT_RESET_CFG |
+ DSI_PORT_BIT(CTRL_RESET_FIFOS));
+
+ DSI_PORT_WRITE(CTRL,
+ DSI_CTRL_HSDT_EOT_DISABLE |
+ DSI_CTRL_RX_LPDT_EOT_DISABLE);
+
+ /* Clear all stat bits so we see what has happened during enable. */
+ DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
+
+ /* Set AFE CTR00/CTR1 to release powerdown of analog. */
+ if (dsi->port == 0) {
+ u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
+ VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
+
+ if (dsi->lanes < 2)
+ afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
+
+ if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
+ afec0 |= DSI0_PHY_AFEC0_RESET;
+
+ DSI_PORT_WRITE(PHY_AFEC0, afec0);
+
+ DSI_PORT_WRITE(PHY_AFEC1,
+ VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
+ VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
+ VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
+ } else {
+ u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
+ VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
+ VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
+ VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
+ VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
+ VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
+ VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
+
+ if (dsi->lanes < 4)
+ afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
+ if (dsi->lanes < 3)
+ afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
+ if (dsi->lanes < 2)
+ afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
+
+ afec0 |= DSI1_PHY_AFEC0_RESET;
+
+ DSI_PORT_WRITE(PHY_AFEC0, afec0);
+
+ DSI_PORT_WRITE(PHY_AFEC1, 0);
+
+ /* AFEC reset hold time */
+ mdelay(1);
+ }
+
+ ret = clk_prepare_enable(dsi->escape_clock);
+ if (ret) {
+ DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
+ return;
+ }
+
+ ret = clk_prepare_enable(dsi->pll_phy_clock);
+ if (ret) {
+ DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
+ return;
+ }
+
+ hs_clock = clk_get_rate(dsi->pll_phy_clock);
+
+ /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
+ * not the pixel clock rate. DSIxP take from the APHY's byte,
+ * DDR2, or DDR4 clock (we use byte) and feed into the PV at
+ * that rate. Separately, a value derived from PIX_CLK_DIV
+ * and HS_CLKC is fed into the PV to divide down to the actual
+ * pixel clock for pushing pixels into DSI.
+ */
+ dsip_clock = phy_clock / 8;
+ ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
+ if (ret) {
+ dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
+ dsip_clock, ret);
+ }
+
+ ret = clk_prepare_enable(dsi->pixel_clock);
+ if (ret) {
+ DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
+ return;
+ }
+
+ /* How many ns one DSI unit interval is. Note that the clock
+ * is DDR, so there's an extra divide by 2.
+ */
+ ui_ns = DIV_ROUND_UP(500000000, hs_clock);
+
+ DSI_PORT_WRITE(HS_CLT0,
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
+ DSI_HS_CLT0_CZERO) |
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
+ DSI_HS_CLT0_CPRE) |
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
+ DSI_HS_CLT0_CPREP));
+
+ DSI_PORT_WRITE(HS_CLT1,
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
+ DSI_HS_CLT1_CTRAIL) |
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
+ DSI_HS_CLT1_CPOST));
+
+ DSI_PORT_WRITE(HS_CLT2,
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
+ DSI_HS_CLT2_WUP));
+
+ DSI_PORT_WRITE(HS_DLT3,
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
+ DSI_HS_DLT3_EXIT) |
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
+ DSI_HS_DLT3_ZERO) |
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
+ DSI_HS_DLT3_PRE));
+
+ DSI_PORT_WRITE(HS_DLT4,
+ VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
+ DSI_HS_DLT4_LPX) |
+ VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
+ dsi_hs_timing(ui_ns, 60, 4)),
+ DSI_HS_DLT4_TRAIL) |
+ VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
+
+ DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
+ DSI_HS_DLT5_INIT));
+
+ DSI_PORT_WRITE(HS_DLT6,
+ VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
+ VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
+ VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
+ VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
+
+ DSI_PORT_WRITE(HS_DLT7,
+ VC4_SET_FIELD(dsi_esc_timing(1000000),
+ DSI_HS_DLT7_LP_WUP));
+
+ DSI_PORT_WRITE(PHYC,
+ DSI_PHYC_DLANE0_ENABLE |
+ (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
+ (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
+ (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
+ DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
+ ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
+ 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
+ (dsi->port == 0 ?
+ VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
+ VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
+
+ DSI_PORT_WRITE(CTRL,
+ DSI_PORT_READ(CTRL) |
+ DSI_CTRL_CAL_BYTE);
+
+ /* HS timeout in HS clock cycles: disabled. */
+ DSI_PORT_WRITE(HSTX_TO_CNT, 0);
+ /* LP receive timeout in HS clocks. */
+ DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
+ /* Bus turnaround timeout */
+ DSI_PORT_WRITE(TA_TO_CNT, 100000);
+ /* Display reset sequence timeout */
+ DSI_PORT_WRITE(PR_TO_CNT, 100000);
+
+ if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
+ DSI_PORT_WRITE(DISP0_CTRL,
+ VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) |
+ VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) |
+ VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
+ DSI_DISP0_LP_STOP_CTRL) |
+ DSI_DISP0_ST_END |
+ DSI_DISP0_ENABLE);
+ } else {
+ DSI_PORT_WRITE(DISP0_CTRL,
+ DSI_DISP0_COMMAND_MODE |
+ DSI_DISP0_ENABLE);
+ }
+
+ /* Set up DISP1 for transferring long command payloads through
+ * the pixfifo.
+ */
+ DSI_PORT_WRITE(DISP1_CTRL,
+ VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
+ DSI_DISP1_PFORMAT) |
+ DSI_DISP1_ENABLE);
+
+ /* Ungate the block. */
+ if (dsi->port == 0)
+ DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
+ else
+ DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
+
+ /* Bring AFE out of reset. */
+ if (dsi->port == 0) {
+ } else {
+ DSI_PORT_WRITE(PHY_AFEC0,
+ DSI_PORT_READ(PHY_AFEC0) &
+ ~DSI1_PHY_AFEC0_RESET);
+ }
+
+ vc4_dsi_ulps(dsi, false);
+
+ if (debug_dump_regs) {
+ DRM_INFO("DSI regs after:\n");
+ vc4_dsi_dump_regs(dsi);
+ }
+
+ ret = drm_panel_enable(dsi->panel);
+ if (ret) {
+ DRM_ERROR("Panel failed to enable\n");
+ drm_panel_unprepare(dsi->panel);
+ return;
+ }
+}
+
+static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
+ const struct mipi_dsi_msg *msg)
+{
+ struct vc4_dsi *dsi = host_to_dsi(host);
+ struct mipi_dsi_packet packet;
+ u32 pkth = 0, pktc = 0;
+ int i, ret;
+ bool is_long = mipi_dsi_packet_format_is_long(msg->type);
+ u32 cmd_fifo_len = 0, pix_fifo_len = 0;
+
+ mipi_dsi_create_packet(&packet, msg);
+
+ pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
+ pkth |= VC4_SET_FIELD(packet.header[1] |
+ (packet.header[2] << 8),
+ DSI_TXPKT1H_BC_PARAM);
+ if (is_long) {
+ /* Divide data across the various FIFOs we have available.
+ * The command FIFO takes byte-oriented data, but is of
+ * limited size. The pixel FIFO (never actually used for
+ * pixel data in reality) is word oriented, and substantially
+ * larger. So, we use the pixel FIFO for most of the data,
+ * sending the residual bytes in the command FIFO at the start.
+ *
+ * With this arrangement, the command FIFO will never get full.
+ */
+ if (packet.payload_length <= 16) {
+ cmd_fifo_len = packet.payload_length;
+ pix_fifo_len = 0;
+ } else {
+ cmd_fifo_len = (packet.payload_length %
+ DSI_PIX_FIFO_WIDTH);
+ pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
+ DSI_PIX_FIFO_WIDTH);
+ }
+
+ WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
+
+ pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
+ }
+
+ if (msg->rx_len) {
+ pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
+ DSI_TXPKT1C_CMD_CTRL);
+ } else {
+ pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
+ DSI_TXPKT1C_CMD_CTRL);
+ }
+
+ for (i = 0; i < cmd_fifo_len; i++)
+ DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
+ for (i = 0; i < pix_fifo_len; i++) {
+ const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
+
+ DSI_PORT_WRITE(TXPKT_PIX_FIFO,
+ pix[0] |
+ pix[1] << 8 |
+ pix[2] << 16 |
+ pix[3] << 24);
+ }
+
+ if (msg->flags & MIPI_DSI_MSG_USE_LPM)
+ pktc |= DSI_TXPKT1C_CMD_MODE_LP;
+ if (is_long)
+ pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
+
+ /* Send one copy of the packet. Larger repeats are used for pixel
+ * data in command mode.
+ */
+ pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
+
+ pktc |= DSI_TXPKT1C_CMD_EN;
+ if (pix_fifo_len) {
+ pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
+ DSI_TXPKT1C_DISPLAY_NO);
+ } else {
+ pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
+ DSI_TXPKT1C_DISPLAY_NO);
+ }
+
+ /* Enable the appropriate interrupt for the transfer completion. */
+ dsi->xfer_result = 0;
+ reinit_completion(&dsi->xfer_completion);
+ DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
+ if (msg->rx_len) {
+ DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
+ DSI1_INT_PHY_DIR_RTF));
+ } else {
+ DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
+ DSI1_INT_TXPKT1_DONE));
+ }
+
+ /* Send the packet. */
+ DSI_PORT_WRITE(TXPKT1H, pkth);
+ DSI_PORT_WRITE(TXPKT1C, pktc);
+
+ if (!wait_for_completion_timeout(&dsi->xfer_completion,
+ msecs_to_jiffies(1000))) {
+ dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
+ dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
+ DSI_PORT_READ(INT_STAT));
+ ret = -ETIMEDOUT;
+ } else {
+ ret = dsi->xfer_result;
+ }
+
+ DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
+
+ if (ret)
+ goto reset_fifo_and_return;
+
+ if (ret == 0 && msg->rx_len) {
+ u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
+ u8 *msg_rx = msg->rx_buf;
+
+ if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
+ u32 rxlen = VC4_GET_FIELD(rxpkt1h,
+ DSI_RXPKT1H_BC_PARAM);
+
+ if (rxlen != msg->rx_len) {
+ DRM_ERROR("DSI returned %db, expecting %db\n",
+ rxlen, (int)msg->rx_len);
+ ret = -ENXIO;
+ goto reset_fifo_and_return;
+ }
+
+ for (i = 0; i < msg->rx_len; i++)
+ msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
+ } else {
+ /* FINISHME: Handle AWER */
+
+ msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
+ DSI_RXPKT1H_SHORT_0);
+ if (msg->rx_len > 1) {
+ msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
+ DSI_RXPKT1H_SHORT_1);
+ }
+ }
+ }
+
+ return ret;
+
+reset_fifo_and_return:
+ DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
+
+ DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
+ udelay(1);
+ DSI_PORT_WRITE(CTRL,
+ DSI_PORT_READ(CTRL) |
+ DSI_PORT_BIT(CTRL_RESET_FIFOS));
+
+ DSI_PORT_WRITE(TXPKT1C, 0);
+ DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
+ return ret;
+}
+
+static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
+ struct mipi_dsi_device *device)
+{
+ struct vc4_dsi *dsi = host_to_dsi(host);
+ int ret = 0;
+
+ dsi->lanes = device->lanes;
+ dsi->channel = device->channel;
+ dsi->format = device->format;
+ dsi->mode_flags = device->mode_flags;
+
+ if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
+ dev_err(&dsi->pdev->dev,
+ "Only VIDEO mode panels supported currently.\n");
+ return 0;
+ }
+
+ dsi->panel = of_drm_find_panel(device->dev.of_node);
+ if (!dsi->panel)
+ return 0;
+
+ ret = drm_panel_attach(dsi->panel, dsi->connector);
+ if (ret != 0)
+ return ret;
+
+ drm_helper_hpd_irq_event(dsi->connector->dev);
+
+ return 0;
+}
+
+static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
+ struct mipi_dsi_device *device)
+{
+ struct vc4_dsi *dsi = host_to_dsi(host);
+
+ if (dsi->panel) {
+ int ret = drm_panel_detach(dsi->panel);
+
+ if (ret)
+ return ret;
+
+ dsi->panel = NULL;
+
+ drm_helper_hpd_irq_event(dsi->connector->dev);
+ }
+
+ return 0;
+}
+
+static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
+ .attach = vc4_dsi_host_attach,
+ .detach = vc4_dsi_host_detach,
+ .transfer = vc4_dsi_host_transfer,
+};
+
+static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
+ .disable = vc4_dsi_encoder_disable,
+ .enable = vc4_dsi_encoder_enable,
+};
+
+static const struct of_device_id vc4_dsi_dt_match[] = {
+ { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
+ {}
+};
+
+static void dsi_handle_error(struct vc4_dsi *dsi,
+ irqreturn_t *ret, u32 stat, u32 bit,
+ const char *type)
+{
+ if (!(stat & bit))
+ return;
+
+ DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
+ *ret = IRQ_HANDLED;
+}
+
+static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
+{
+ struct vc4_dsi *dsi = data;
+ u32 stat = DSI_PORT_READ(INT_STAT);
+ irqreturn_t ret = IRQ_NONE;
+
+ DSI_PORT_WRITE(INT_STAT, stat);
+
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_ERR_CONT_LP0, "LP0 contention");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_ERR_CONT_LP1, "LP1 contention");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_HSTX_TO, "HSTX timeout");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_LPRX_TO, "LPRX timeout");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_TA_TO, "turnaround timeout");
+ dsi_handle_error(dsi, &ret, stat,
+ DSI1_INT_PR_TO, "peripheral reset timeout");
+
+ if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
+ complete(&dsi->xfer_completion);
+ ret = IRQ_HANDLED;
+ } else if (stat & DSI1_INT_HSTX_TO) {
+ complete(&dsi->xfer_completion);
+ dsi->xfer_result = -ETIMEDOUT;
+ ret = IRQ_HANDLED;
+ }
+
+ return ret;
+}
+
+/**
+ * Exposes clocks generated by the analog PHY that are consumed by
+ * CPRMAN (clk-bcm2835.c).
+ */
+static int
+vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
+{
+ struct device *dev = &dsi->pdev->dev;
+ const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
+ static const struct {
+ const char *dsi0_name, *dsi1_name;
+ int div;
+ } phy_clocks[] = {
+ { "dsi0_byte", "dsi1_byte", 8 },
+ { "dsi0_ddr2", "dsi1_ddr2", 4 },
+ { "dsi0_ddr", "dsi1_ddr", 2 },
+ };
+ int i;
+
+ dsi->clk_onecell.clk_num = ARRAY_SIZE(phy_clocks);
+ dsi->clk_onecell.clks = devm_kcalloc(dev,
+ dsi->clk_onecell.clk_num,
+ sizeof(*dsi->clk_onecell.clks),
+ GFP_KERNEL);
+ if (!dsi->clk_onecell.clks)
+ return -ENOMEM;
+
+ for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
+ struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
+ struct clk_init_data init;
+ struct clk *clk;
+
+ /* We just use core fixed factor clock ops for the PHY
+ * clocks. The clocks are actually gated by the
+ * PHY_AFEC0_DDRCLK_EN bits, which we should be
+ * setting if we use the DDR/DDR2 clocks. However,
+ * vc4_dsi_encoder_enable() is setting up both AFEC0,
+ * setting both our parent DSI PLL's rate and this
+ * clock's rate, so it knows if DDR/DDR2 are going to
+ * be used and could enable the gates itself.
+ */
+ fix->mult = 1;
+ fix->div = phy_clocks[i].div;
+ fix->hw.init = &init;
+
+ memset(&init, 0, sizeof(init));
+ init.parent_names = &parent_name;
+ init.num_parents = 1;
+ if (dsi->port == 1)
+ init.name = phy_clocks[i].dsi1_name;
+ else
+ init.name = phy_clocks[i].dsi0_name;
+ init.ops = &clk_fixed_factor_ops;
+ init.flags = CLK_IS_BASIC;
+
+ clk = devm_clk_register(dev, &fix->hw);
+ if (IS_ERR(clk))
+ return PTR_ERR(clk);
+
+ dsi->clk_onecell.clks[i] = clk;
+ }
+
+ return of_clk_add_provider(dev->of_node,
+ of_clk_src_onecell_get,
+ &dsi->clk_onecell);
+}
+
+static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct drm_device *drm = dev_get_drvdata(master);
+ struct vc4_dev *vc4 = to_vc4_dev(drm);
+ struct vc4_dsi *dsi;
+ struct vc4_dsi_encoder *vc4_dsi_encoder;
+ const struct of_device_id *match;
+ dma_cap_mask_t dma_mask;
+ int ret;
+
+ dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
+ if (!dsi)
+ return -ENOMEM;
+
+ match = of_match_device(vc4_dsi_dt_match, dev);
+ if (!match)
+ return -ENODEV;
+
+ dsi->port = (uintptr_t)match->data;
+
+ vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
+ GFP_KERNEL);
+ if (!vc4_dsi_encoder)
+ return -ENOMEM;
+ vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
+ vc4_dsi_encoder->dsi = dsi;
+ dsi->encoder = &vc4_dsi_encoder->base.base;
+
+ dsi->pdev = pdev;
+ dsi->regs = vc4_ioremap_regs(pdev, 0);
+ if (IS_ERR(dsi->regs))
+ return PTR_ERR(dsi->regs);
+
+ if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
+ dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
+ DSI_PORT_READ(ID), DSI_ID_VALUE);
+ return -ENODEV;
+ }
+
+ /* DSI1 has a broken AXI slave that doesn't respond to writes
+ * from the ARM. It does handle writes from the DMA engine,
+ * so set up a channel for talking to it.
+ */
+ if (dsi->port == 1) {
+ dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
+ &dsi->reg_dma_paddr,
+ GFP_KERNEL);
+ if (!dsi->reg_dma_mem) {
+ DRM_ERROR("Failed to get DMA memory\n");
+ return -ENOMEM;
+ }
+
+ dma_cap_zero(dma_mask);
+ dma_cap_set(DMA_MEMCPY, dma_mask);
+ dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
+ if (IS_ERR(dsi->reg_dma_chan)) {
+ ret = PTR_ERR(dsi->reg_dma_chan);
+ if (ret != -EPROBE_DEFER)
+ DRM_ERROR("Failed to get DMA channel: %d\n",
+ ret);
+ return ret;
+ }
+
+ /* Get the physical address of the device's registers. The
+ * struct resource for the regs gives us the bus address
+ * instead.
+ */
+ dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
+ 0, NULL, NULL));
+ }
+
+ init_completion(&dsi->xfer_completion);
+ /* At startup enable error-reporting interrupts and nothing else. */
+ DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
+ /* Clear any existing interrupt state. */
+ DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
+
+ ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
+ vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
+ if (ret) {
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get interrupt: %d\n", ret);
+ return ret;
+ }
+
+ dsi->escape_clock = devm_clk_get(dev, "escape");
+ if (IS_ERR(dsi->escape_clock)) {
+ ret = PTR_ERR(dsi->escape_clock);
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get escape clock: %d\n", ret);
+ return ret;
+ }
+
+ dsi->pll_phy_clock = devm_clk_get(dev, "phy");
+ if (IS_ERR(dsi->pll_phy_clock)) {
+ ret = PTR_ERR(dsi->pll_phy_clock);
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get phy clock: %d\n", ret);
+ return ret;
+ }
+
+ dsi->pixel_clock = devm_clk_get(dev, "pixel");
+ if (IS_ERR(dsi->pixel_clock)) {
+ ret = PTR_ERR(dsi->pixel_clock);
+ if (ret != -EPROBE_DEFER)
+ dev_err(dev, "Failed to get pixel clock: %d\n", ret);
+ return ret;
+ }
+
+ /* The esc clock rate is supposed to always be 100Mhz. */
+ ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
+ if (ret) {
+ dev_err(dev, "Failed to set esc clock: %d\n", ret);
+ return ret;
+ }
+
+ ret = vc4_dsi_init_phy_clocks(dsi);
+ if (ret)
+ return ret;
+
+ if (dsi->port == 1)
+ vc4->dsi1 = dsi;
+
+ drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
+ DRM_MODE_ENCODER_DSI, NULL);
+ drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
+
+ dsi->connector = vc4_dsi_connector_init(drm, dsi);
+ if (IS_ERR(dsi->connector)) {
+ ret = PTR_ERR(dsi->connector);
+ goto err_destroy_encoder;
+ }
+
+ dsi->dsi_host.ops = &vc4_dsi_host_ops;
+ dsi->dsi_host.dev = dev;
+
+ mipi_dsi_host_register(&dsi->dsi_host);
+
+ dev_set_drvdata(dev, dsi);
+
+ pm_runtime_enable(dev);
+
+ return 0;
+
+err_destroy_encoder:
+ vc4_dsi_encoder_destroy(dsi->encoder);
+
+ return ret;
+}
+
+static void vc4_dsi_unbind(struct device *dev, struct device *master,
+ void *data)
+{
+ struct drm_device *drm = dev_get_drvdata(master);
+ struct vc4_dev *vc4 = to_vc4_dev(drm);
+ struct vc4_dsi *dsi = dev_get_drvdata(dev);
+
+ pm_runtime_disable(dev);
+
+ vc4_dsi_connector_destroy(dsi->connector);
+ vc4_dsi_encoder_destroy(dsi->encoder);
+
+ mipi_dsi_host_unregister(&dsi->dsi_host);
+
+ clk_disable_unprepare(dsi->pll_phy_clock);
+ clk_disable_unprepare(dsi->escape_clock);
+
+ if (dsi->port == 1)
+ vc4->dsi1 = NULL;
+}
+
+static const struct component_ops vc4_dsi_ops = {
+ .bind = vc4_dsi_bind,
+ .unbind = vc4_dsi_unbind,
+};
+
+static int vc4_dsi_dev_probe(struct platform_device *pdev)
+{
+ return component_add(&pdev->dev, &vc4_dsi_ops);
+}
+
+static int vc4_dsi_dev_remove(struct platform_device *pdev)
+{
+ component_del(&pdev->dev, &vc4_dsi_ops);
+ return 0;
+}
+
+struct platform_driver vc4_dsi_driver = {
+ .probe = vc4_dsi_dev_probe,
+ .remove = vc4_dsi_dev_remove,
+ .driver = {
+ .name = "vc4_dsi",
+ .of_match_table = vc4_dsi_dt_match,
+ },
+};