Use the generic board detection for the board instead of the target
specific one. Mark the sysupgrade image compatible with the former used
userspace boardname to allow an upgrade from earlier versions.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection instead of the target specific one as
all recent additions are doing.
Setup the USB led via devicetree (a58535771f) and include the required
driver by default. Merge the led userspace setting with an existing
identical case.
Use the wps led for boot status indication.
Move the partitions into a partition table node (6031ab345d) and drop
needless labels. Drop misplaced cells properties (53624c1702).
Cleanup the pinmux and only switch pins to gpio functions which a
referenced as gpio in the dts.
Match the maximum image size with the size of the firmware partition.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection instead of the target specific one as
all recent additions are doing.
Add the wireless led according the gpio number from the datasheet.
Rename the board part of the leds to match the name used for the
compatible string. Finally, do not hijack the wps led for boot status
indication longer than necessary.
Merge userspace config into existing cases.
Include the manufacture Name in the dts model string.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The Lava LR-25G001 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7610EN)
- 5x 10/100/1000 Mbps AR8337 Switch (1 WAN AND 4 LAN)
- 2x external, detachable antennas
- 1x USB 2.0
- UART (J3) header on PCB (57600 8n1)
- 8x LED (3x GPIO-controlled), 2x button
- JBOOT bootloader
Known issues:
- Work only three Gigabit ports (3/5, 1 WAN and 2LAN)
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
On the bottom sticker it's branded as ZTE ZXECS EBG3130 device, but in factory
OpenWrt image it's referenced as BDCOM WAP2100-SK device.
Specifications:
- SoC: MediaTek MT7620A
- RAM: 128 MB
- Flash: 16 MB
- Ethernet: 5 FE ports
- Wireless radio: 2T2R 2.4 GHz and 1T1R 5 GHz (MT7610EN, unsupported)
- UART: 1 x UART on PCB marked as J2 (R=RX, T=TX, G=GND) with 115200 8N1 config
- LEDs: Power, FE ports 1-5, WPS, USB, RF 2.4G, RF 5G
- Other: USB port, SD card slot and 2x external antennas (non-detachable)
Flashing instructions:
A) The U-Boot has HTTP based firmware upgrade
A1) Flashing notes
We've identified so far two different batches of units, unfortunately
each batch has different U-Boot bootloader flashed with different
default environment variables, thus each batch has different IP address
for accessing web based firmware updater.
* First batch has web based bootloader IP address 1.1.1.1
* Second batch has web based bootloader IP address 192.168.1.250
In case you can't connect to either of those IPs, you can try to get
the default IP address via two methods:
A1.1) Serial console, then the IP address is visible during the boot
...
HTTP server is starting at IP: 1.1.1.1
raspi_read: from:40004 len:6
HTTP server is ready!
...
A1.2) Over telnet/SSH using this command:
root@bdcom:/# grep ipaddr= /dev/mtd0
ipaddr=1.1.1.1
A2) Flashing with browser
* Change IP address of PC to 1.1.1.2 with 255.255.255.0 netmask
* Reboot the device and try to reach web based bootloader in the
browser with the following URL http://1.1.1.1
* Quickly select the firmware sysupgrade file and click on the
`Update firmware` button, this all has to be done within 10 seconds,
bootloader doesn't wait any longer
If done correctly, the web page should show UPDATE IN PROGRESS page
with progress indicator. Once the flashing completes (it takes roughly
around 1 minute), the device will reboot to the OpenWrt firmware
A3) Flashing with curl
sudo ip addr add 1.1.1.2/24 dev eth0
curl \
--verbose \
--retry 3 \
--retry-delay 1 \
--retry-max-time 30 \
--connect-timeout 30 \
--form "firmware=@openwrt-ramips-mt7620-BDCOM-WAP2100-SK-squashfs-sysupgrade.bin" \
http://1.1.1.1
Now power on the router.
B) The U-boot is based on Ralink SDK so we can flash the firmware using UART.
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART line as described on the PCB (G=GND, R=RX, T=TX)
4. Power up the device and press 2, follow the instruction to set device and
tftp server IP address and input the firmware file name. U-boot will then load
the firmware and write it into the flash.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specifically, SKW92A_E16, described here:
http://www.skylabmodule.com/wp-content/uploads/SkyLab_SKW92A_V1.04_datasheet.pdf
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x u.FL
- Power by micro-USB connector at USB1 on EVB
- UART via micro-USB connector at USB3 on EVB (57600 8n1)
- 5x Ethernet LEDs
- 1x WLAN LEDs
- 1x WPS LED connected by jumper wire from I2S_CK on J20 to WPS_LED pin hole next
to daughter board on EVB
- WPS/Reset button (S2 on EVB)
- RESET button (S1 on EVB) is *not* connected to RST hole next to daughter board
Flash instruction:
>From Skylab firmware:
1. Associate with SKYLAP_AP
2. In a browser, load: http://10.10.10.254/
3. Username/password: admin/admin
4. In web admin interface: Administration / Upload Firmware, browse to
sysupgrade image, apply, flash will fail with a message:
Not a valid firmware. *** Warning: "/var/tmpFW" has corrupted data!
5. Telnet to 10.10.10.254, drops you into a root shell with no credentials
6. # cd /var
7. # mtd_write -r write tmpFW mtd4
Unlocking mtd4 ...
Writing from tmpFW to mtd4 ... [e]
8. When flash has completed, you will have booted into your firmware.
>From U-boot via TFTP and initramfs:
1. Place openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin on a TFTP server
2. Connect to serial console at USB3 on EVB
3. Connect ethernet between port 1 (not WAN) and your TFTP server (e.g.
192.168.11.20)
4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC
5. Apply power to EVB
6. Interrupt u-boot with keypress of "1"
7. At u-boot prompts:
Input device IP (10.10.10.123) ==:192.168.11.21
Input server IP (10.10.10.3) ==:192.168.11.20
Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-initramfs-kernel.bin
8. Move ethernet to port 0 (WAN) on EVB
9. At new OpenWrt console shell, fetch squashfs-sysupgrade image and flash
with sysupgrade.
>From U-boot via TFTP direct flash:
1. Place openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin on a TFTP server
2. Connect to serial console at USB3 on EVB (57600 8N1)
3. Connect ethernet between port 1 (not WAN) an your TFTP server (e.g.
192.168.11.20)
4. Start terminal software (e.g. screen /dev/ttyUSB0 57600) on PC
5. Apply power to EVB
6. Interrupt u-boot with keypress of "2"
7. At u-boot prompts:
Warning!! Erase Linux in Flash then burn new one. Are you sure?(Y/N) Y
Input device IP (10.10.10.123) ==:192.168.11.21
Input server IP (10.10.10.3) ==:192.168.11.20
Input Linux Kernel filename (root_uImage) ==:openwrt-ramips-mt76x8-skw92a-squashfs-sysupgrade.bin
8. When transfer is complete or as OpenWrt begins booting, move ethernet to
port 0 (WAN).
Signed-off-by: Russell Senior <russell@personaltelco.net>
TP-Link TL-MR3020 v3 is a pocket-size router based on MediaTek MT7628N.
This PR is based on the work of @meyergru[1], with his permission.
Specification:
- MediaTek MT7628N/N (575 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz
- 1x 10/100 Mbps Ethernet
Flash instruction:
The only way to flash the image in TL-MR3020 v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-mr3020-v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
[1] https://github.com/meyergru/lede-source/commits/TL-MR3020-V3
Signed-off-by: Carlo Nel <carlojnel@gmail.com>
ELECOM WRC-1900GST is a wireless router, based on Mediatek MT7621A.
This is almost same as WRC-2533GST except wireless specs.
Specifications:
- SoC : MT7621A (four logical CPU cores)
- RAM : 128MiB
- ROM : 16MiB of SPI NOR-FLASH
- wireless :
5GHz : 3T3R up to 1300Mbps/11ac with MT7615
2.4GHz : 3T3R up to 600Mbps/11n with MT7615
- Ethernet : 5 ports, all ports is capable of 1000base-T
- Ether switch : MT7530 (MT7621A built-in)
- LEDs : 4 LEDs
- buttons : 2 buttons and 1 slide-switch
- UART : header is on PCB, 57600bps
Flash instruction using factory image:
1. Connect the computer to the LAN port of WRC-1900GST
2. Connect power cable to WRC-1900GST and turn on it
3. Access to "https://192.168.2.1/" and open firmware update
page ("ファームウェア更新")
4. Select the OpenWrt factory image and click apply ("適用")
button
5. Wait ~150 seconds to complete flashing
Signed-off-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
Set the (sys)upgrade state when sourcing the stage2 script instead of
setting the state for each target individual.
This change fixes the, due to a missing state set, not working upgrade
led on ath79 and apm821xx.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The DWR-118-A2 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 128 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7612EN)
- 4x 10/100 Mbps Ethernet (1 WAN and 3 LAN)
- 1x 10/100/1000 Mbps Marvell Ethernet PHY (1 LAN)
- 2x external, non-detachable antennas
- 1x USB 2.0
- UART (J1) header on PCB (57600 8n1)
- 7x LED (5x GPIO-controlled), 2x button
- JBOOT bootloader
Known issues:
- GELAN not working
- flash is very slow
The status led has been assigned to the dwr-118-a2:green:internet led.
At the end of the boot it is switched off and is available for other
operation. Work correctly also during sysupgrade operation.
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Cezary Jackiewicz <cezary@eko.one.pl>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
HiWiFi "Gee Enjoy1200" HC5861B is a dual-band router based on MediaTek MT7628AN
https://www.hiwifi.com/enjoy-view
Specifications:
- MediaTek MT7628AN 580MHz
- 128 MB DDR2 RAM
- 16 MB SPI Flash
- 2.4G MT7628AN 802.11bgn 2T2R 300Mbps
- 5G MT7612EN 802.11ac 2T2R 867Mbps
- 5x 10/100 Mbps Ethernet
Flash instruction:
1. Get SSH access to the router
2. SSH to router with `ssh -p 1022 root@192.168.199.1`, The SSH password is the same as the webconfig one
3. Upload OpenWrt sysupgrade firmware into the router's `/tmp` folder with SCP
4. Run `mtd write /tmp/<filename> firmware`
5. reboot
Everything is working
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
The wholesale changes introduced in commit f9b8328 missed this DTS file
because it hadn't been merged yet. This patch brings it in line to match
the other mt7620a devices' DTS files.
Additionally, the Internet LED is now labeled correctly and set to unused
by default, since the WAN interface is not known in every configuration.
Using sysupgrade between images before and after this commit will require
the -F flag.
Tested-by: Rohan Murch <rohan.murch@gmail.com>
Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
[drop internet led default setting]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support for the Netgear R6120, aka Netgear AC1200.
Specification:
- SoC: MediaTek MT7628 (580 MHz)
- Flash: 16 MiB
- RAM: 64 MiB
- Wireless: 2.4Ghz(builtin) and 5Ghz (MT7612E)
- LAN speed: 10/100
- LAN ports: 4
- WAN speed: 10/100
- WAN ports: 1
- Serial baud rate of Bootloader and factory firmware: 57600
To flash use nmrpflash with the provided factory.img.
Flashing via webinterface will not work, for now.
Signed-off-by: Ludwig Thomeczek <ledesrc@wxorx.net>
ELECOM WRC-2533GST is a 2.4/5 GHz band 11ac rotuer, based on
MediaTek MT7621A.
Specification:
- MT7621A (2-Core, 4-Threads)
- 128 MB of RAM (DDR3)
- 16 MB of Flash (SPI)
- 4T4R 2.4/5 GHz wifi
- MediaTek MT7615
- 5x 10/100/1000 Mbps Ethernet
- 4x LEDs, 6 keys (2x buttons, 1x slide switch)
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 57600 bps
Flash instruction using factory image:
1. Connect the computer to the LAN port of WRC-2533GST
2. Connect power cable to WRC-2533GST and turn on it
3. Access to "https://192.168.2.1/" and open firmware update
page ("ファームウェア更新")
4. Select the OpenWrt factory image and click apply ("適用")
button
5. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
I-O DATA WN-AX1167GR is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7621A.
Specification:
- MT7621A (2-Cores, 4-Threads)
- 64 MB of RAM (DDR2)
- 16 MB of Flash (SPI)
- 2T2R 2.4/5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 2x LEDs, 4x keys (2x buttons, 1x slide switch)
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 115200 bps (U-Boot, OpenWrt)
Stock firmware:
In the stock firmware, WN-AX1167GR has two os images each composed of
Linux kernel and rootfs.
These images are stored in "Kernel" and "app" partition of the
following partitions, respectively.
(excerpt from dmesg):
MX25L12805D(c2 2018c220) (16384 Kbytes)
mtd .name = raspi, .size = 0x01000000 (16M) .erasesize = 0x00010000 (64K) .numeraseregions = 0
Creating 10 MTD partitions on "raspi":
0x000000000000-0x000001000000 : "ALL"
0x000000000000-0x000000030000 : "Bootloader"
0x000000030000-0x000000040000 : "Config "
0x000000040000-0x000000050000 : "Factory"
0x000000050000-0x000000060000 : "iNIC_rf"
0x000000060000-0x0000007e0000 : "Kernel"
0x000000800000-0x000000f80000 : "app"
0x000000f90000-0x000000fa0000 : "Key"
0x000000fa0000-0x000000fb0000 : "backup"
0x000000fb0000-0x000001000000 : "storage"
The flag for boot partition is stored in "Key" partition, and U-Boot
reads this and determines the partition to boot.
If the image that U-Boot first reads according to the flag is
"Bad Magic Number", U-Boot then tries to boot from the other image.
If the second image is correct, change the flag to the number
corresponding to that image and boot from that image.
(example):
## Booting image at bc800000 ...
Bad Magic Number,FFFFFFFF
Boot from KERNEL 1 !!
## Booting image at bc060000 ...
Image Name: MIPS OpenWrt Linux-4.14.50
Image Type: MIPS Linux kernel Image (lzma compressed)
Data Size: 1865917 Bytes = 1.8 MB
Load Address: 80001000
Entry Point: 80001000
Verifying Checksum ... OK
Uncompressing Kernel Image ... OK
raspi_erase_write: offs:f90000, count:34
.
.
Done!
Starting kernel ...
Flash instruction using factory image:
1. Connect the computer to the LAN port of WN-AX1167GR
2. Connect power cable to WN-AX1167GR and turn on it
3. Access to "192.168.0.1" on the web browser and open firmware
update page ("ファームウェア")
4. Select the OpenWrt factory image and perform firmware update
5. On the initramfs image, execute "mtd erase firmware" to erase stock
firmware and execute sysupgrade with sysupgrade image for WN-AX1167GR
6. Wait ~180 seconds to complete flasing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Specification:
- System-On-Chip: MediaTek MT7628NN
- CPU/Speed: 580 MHz
- Flash-Chip: ELM Technology GD25Q64
- Flash size: 8192 KiB
- RAM: 64 MiB
- Wireless No1: SoC-integrated: MT7628N 2.4GHz 802.11bgn
Currently the only method to install openwrt for the first time is via
TFTP recovery. After first install you can use regular updates.
Flash instructions:
1) To flash the recovery image, start a TFTP server with IP address
192.168.0.66 and serve the recovery image named tp_recovery.bin.
2) Connect your device to the LAN port, then press the WPS and Reset
button and power it up. Keep pressing the WPS/Reset button for
10 seconds or until the lock LED is lighting up.
It will try to download the recovery image and flash it.
It can take up to 2-3 minutes to finish. When it reaches 100%, the
router will reboot itself.
Signed-off-by: Romain MARIADASSOU <roms2000@free.fr>
Specification:
- System-On-Chip: MT7628N/N
- CPU/Speed: 580 MHz
- Flash-Chip: Winbond w25q256
- Flash size: 32768 KiB
- RAM: 128 MiB
- 5x 10/100 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (57600 8n1)
- Wireless No1 (2T2R): SoC-integrated: MT7628N 2.4GHz 802.11bgn
- Wireless No2 (2T2R): On-board chip: MT7612EN 5GHz 802.11ac
- USB: Yes 1 x 2.0
- 4x LED, 3x button
The device supports dual boot mode. So we use only first half of flash.
Flash instruction:
The only way to flash OpenWrt image is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-zyxel_keenetic-extra-ii-squashfs-factory.bin"
to "kextra2_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power led start blinking.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
This commit adds support for the MikroTik RouterBOARD RBM11g.
=Hardware=
The RBM11g is a mt7621 based device featuring one GbE port and one
miniPCIe slot with a sim card socket and USB 2.0.
==Switch==
The single onboard Ethernet port is connected the CPU directly.
The internal switch of the mt7621 SoC is disabled.
==Flash==
The device has one spi nor flash chip. It is a 128 Mbit winbond 25Q128FVS
connected to CS0.
==PCIe==
The board features a single miniPCIe slot. It has a dedicated mini SIM
socket and a USB 2.0 port. Power to the miniPCIe slot is controlled via
GPIO9.
==USB==
There are no external USB ports.
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack (center-positive). The input voltage range is 11-32 V.
==Serial port==
The device does have an onboard UART on an unpopulated header next to the
flash chip:
GND: pin 2
TX: pin 7
RX: pin 6
Settings: 115200, 8N1
See below illustration for positioning of the header.
0 = screw hole
* = some pin
T = TX pin
R = RX pin
G = GND pin
Pinout:
+---------------
|O
| __
| / \
| \__/
|
|
|
| +---+
| |RAM|
| +--+ | |
| |**| <- unpopulated header with UART
| |*T| +---+
| |R*| +--------+
| |**| | |
| |G*| | CPU |
| +--+ | |
| +--+ | |
| | | +--------+
| +--+ <- flash chip
|O
| +-----+
| | |
|+--+ | |
|| | | |
+---------------------
=Installation=
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM11G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin" in the
output directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the
created license file.**
When rebooted the board will try booting via ethernet first. If your
board does not boot via ethernet automatically you will have to attach
to the serial port and set ethernet as boot device within RouterBOOT.
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin"
initramfs image
2. Connect to ethernet port on board
3. Power on the board
4. Wait for OpenWrt to boot
Right now OpenWrt will be running with a SSH server listening. Now
OpenWrt must be flashed to the devices flash:
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin"
to the device using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin"
Once the flashing completes the board will reboot. Disconnect from the
devices ethernet port or stop the DHCP/TFTP server to prevent the device
from booting via ethernet again.
The device should now boot straight to OpenWrt.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
Specification:
- System-On-Chip: MT7620A
- CPU/Speed: 580 MHz
- Flash-Chip: Winbond 25Q64BVSIG
- Flash size: 8192 KiB
- RAM: 64 MiB
- Wireless No1: SoC-integrated: MT7620A 2.4GHz 802.11bgn
- Wireless No2: On-board chip: MT7610EN 5GHz 802.11ac
- Switch: RTL8367RB Gigabit Switch
- USB: Yes 1 x 2.0
Preparing a TFTP recovery image for initial flashing:
Currently the only method to install openwrt for the first time is via
TFTP download in u-boot. After first install you can use regular updates.
WARNING: This method also overwrites the bootloader partition!
Create a TFTP recovery image:
1) Download a stock TP-Link Firmware file here:
https://www.tp-link.com/en/download/Archer-C2_V1.html#Firmware
2) Extract u-boot from the binary file:
#> dd if=c2v1_stock_firmware.bin of=c2v1_uboot.bin bs=1 skip=512 count=131072
3) Now merge the sysupgrade image and the u-boot into one binary:
#> cat c2v1_uboot.bin openwrt-squashfs-sysupgrade.bin > ArcherC2V1_tp_recovery.bin
The resulting image can be flashed via TFTP recovery mode.
Flash instructions:
1) To flash the recovery image, start a TFTP server from IP address
192.168.0.66 and serve the recovery image named
ArcherC2V1_tp_recovery.bin.
2) Connect your device to the LAN port, then press the WPS/Reset button
and power it up. Keep pressing the WPS/Reset button for 10 seconds.
It will try to download the recovery image and flash it.
It can take up to 20-25 minutes to finish. When it reaches 100%, the
router will reboot itself.
Signed-off-by: Serge Vasilugin <vasilugin@yandex.ru>
Signed-off-by: Franz Flasch <franz.flasch@gmx.at>
Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped with external PA.
- UART: 1 x UART on PCB - 57600 8N1
Flash instruction:
The U-boot is based on Ralink SDK so we can flash the firmware using UART:
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART line as described on the PCB.
4. Power up the device and press 2, follow the instruction to
set device and tftp server IP address and input the firmware
file name. U-boot will then load the firmware and write it into
the flash.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This commit adds support for the Mikrotik RouterBOARD RBM33g.
=Hardware=
The RBM33g is a mt7621 based device featuring three gigabit ports, 2
miniPCIe slots with sim card sockets, 1 M.2 slot, 1 USB 3.0 port and a male
onboard RS-232 serial port. Additionally there are a lot of accessible
GPIO ports and additional buses like i2c, mdio, spi and uart.
==Switch==
The three Ethernet ports are all connected to the internal switch of the
mt7621 SoC:
port 0: Ethernet Port next to barrel jack with PoE printed on it
port 1: Innermost Ethernet Port on opposite side of RS-232 port
port 2: Outermost Ethernet Port on opposite side of RS-232 port
port 6: CPU
==Flash==
The device has two spi flash chips. The first flash chips is rather small
(512 kB), connected to CS0 by default and contains only the RouterBOOT
bootloader and some factory information (e.g. mac address).
The second chip has a size of 16 MB, is by default connected to CS1 and
contains the firmware image.
==PCIe==
The board features three PCIe-enabled slots. Two of them are miniPCIe
slots (PCIe0, PCIe1) and one is a M.2 (Key M) slot (PCIe2).
Each of the miniPCIe slots is connected to a dedicated mini SIM socket
on the back of the board.
Power to all three PCIe-enabled slots is controlled via GPIOs on the
mt7621 SoC:
PCIe0: GPIO9
PCIe1: GPIO10
PCIe2: GPIO11
==USB==
The board has one external USB 3.0 port at the rear. Additionally PCIe
port 0 has a permanently enabled USB interface. PCIe slot 1 shares its
USB interface with the rear USB port. Thus only either the rear USB port
or the USB interface of PCIe slot 1 can be active at the same time. The
jumper next to the rear USB port controls which one is active:
open: USB on PCIe 1 is active
closed: USB on rear USB port is active
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack. The input voltage range is 11-32 V.
=Installation=
==Prerequisites==
A USB -> RS-232 Adapter and a null modem cable are required for
installation.
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM33G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" in the output
directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the created
license file.**
Serial settings: 115200 8N1
The installation is a two-step process. First the
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" must be booted
via tftp:
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin"
initramfs image
2. Connect to WAN port (left side, next to sys-LED and power indicator)
3. Connect to serial port of board
4. Power on board and enter RouterBOOT setup menu
5. Set boot device to "boot over ethernet"
6. Set boot protocol to "dhcp protocol" (can be omitted if DHCP server
allows dynamic bootp)
6. Save config
7. Wait for board to boot via Ethernet
On the serial port you should now be presented with the OpenWRT boot log.
The next steps will install OpenWRT persistently.
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" to the device
using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin"
Once the flashing completes reboot the router and let it boot from flash.
It should boot straight to OpenWRT.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
ELECOM WRC-1167GHBK2-S is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7621A.
Specification:
- MT7621A (2-Cores, 4-Threads)
- 128 MB of RAM (DDR3)
- 16 MB of Flash (SPI)
- 2T2R 2.4/5 GHz
- MediaTek MT7615D
- 5x 10/100/1000 Mbps Ethernet
- 6x LEDs, 2x keys
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 57600 bps
Flash instruction using factory image:
1. Rename the factory image to "wrc-1167ghbk2-s_v0.00.bin"
2. Connect the computer to the LAN port of WRC-1167GHBK2-S
3. Connect power cable to WRC-1167GHBK2-S and turn on it
4. Access to "http://192.168.2.1/details.html" and open firmware
update page ("手動更新(アップデート)")
5. Select the factory image and click apply ("適用") button
6. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
TP-Link TL-WR842N v5 are simple N300 router with 5-port FE switch and
non-detachable antennas. Its very similar to TP-Link TL-MR3420 V5.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- USB 2.0 Port
- UART (J1) header on PCB (115200 8n1)
- 7x LED, 2x button, power input switch
Flash instruction:
The only way to flash OpenWrt image in wr842nv5 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "lede-ramips-mt7628-tplink_tl-wr842n-v5-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
I-O DATA WN-GX300GR is a 2.4 GHz band 11n router, based on MediaTek
MT7621S.
Specification:
- MT7621S (1-Core, 2-Threads)
- 64 MB of RAM
- 8 MB of Flash (SPI)
- 2T2R 2.4 GHz
- 5x 10/100/1000 Mbps Ethernet
- 2x LEDs, 4x keys (2x buttons, 1x slide switch)
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 115200 bps (U-Boot, OpenWrt)
Flash instruction using initramfs image:
1. Connect serial cable to UART header
2. Rename OpenWrt initramfs image for WN-GX300GR to "uImageWN-GX300GR"
and place it in the TFTP directory
3. Set the IP address of the computer to 192.168.99.8, connect to the
LAN port of WN-GX300GR, and start the TFTP server on the computer
4. Connect power cable to WN-GX300GR and turn on the router
5. Press "1" key on the serial console to interrupt boot process on
U-Boot, press Enter key 3 times and start firmware download via TFTP
6. WN-GX300GR downloads initramfs image and boot with it
7. On the initramfs image, execute "mtd erase firmware" to erase stock
firmware and execute sysupgrade with sysupgrade image for WN-GX300GR
8. Wait ~150 seconds to complete flasing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This is a port of an old commit from mkresin's tree:
09260cdf3e9332978c2a474a58e93a6f2b55f4a8
This has the potential to break sysupgrade but it should be fine as
there is no stable release of LEDE or OpenWrt that support these devices.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
BOCCO is a communication robot provided by YUKAI Engineering Inc.
SoC: MT7620A
MEM: 256MB
Flash: 8MB
NAND: 512MB (non support)
Include Sound DAC and AMP.
No Wired Ethernet.
Signed-off-by: YuheiOKAWA <tochiro.srchack@gmail.com>
Splitted out the dts file and create the new dts for the 256 MByte RAM and
the 512 MB RAM version.
Migrate both versions to the common board detection.
The install the 512 MByte Version on a board running the 256 MByte image,
a forceful sysupgrade with the -F flag is required.
Signed-off-by: Davide Ammirata <list@davidea.it>
The RavPower WD03 is a battery powered SD card reader and a USB port.
Specifications:
SOC: MediaTek MT7620N
BATTERY: 6000mah
WLAN: 802.11bgn
LAN: 1x 10/100 Mbps Ethernet
USB: 1x USB 2.0 (Type-A)
RAM: PM Tech PMD708416CTR-5CN 32 MB
FLASH: Holtek HT66F40 - 8 MB Flash
LED: Power button and 4 leds to indicate power level of the
battery (could not get control of that)
INPUT: Power, reset button
OTHER: USB SD-Card reader with card detect on GPIO#42
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- installation from tftp
- OpenWRT sysupgrade (Preserving and non-preserving)
- LEDs
- Buttons
Installation:
- Download the sysupgrade image
- Place it in the root of a clean TFTP server running on your computer.
- Rename the image to "kernel" — be sure there is no file extension.
- Plug the WD03 into your computer via ethernet.
- Set your computer to use 10.10.10.254 as its IP address.
- With your WD03 shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The WD03 (10.10.10.128) will look for your computer at 10.10.10.254
and install the kernel file. Once it has finished installation of the
kernel file, it will search for a (nonexistent) rootfs file — when it
begins searching for this file, shut down the WD03 by holding the
power button normally.
- Start up your WD03 normally.
Signed-off-by: Matthias Badaire <mbadaire@gmail.com>
The Zorlik ZL5900V2 is an unbranded clone of HAME MPR-A1/2. It is
marketed as "3G Wi-Fi Router". Only the PCB has the model name
"ZL5900V2" printed on it.
Specifications:
- Ralink RT5350F (360 MHz)
- 32 MB RAM
- 8 MB Flash
- 802.11bgn 1T1R
- 1x 10/100 Mbps Ethernet
- 1x USB 2.0 (Type-A)
- 5200 mAh battery
The ramdisk image (not the squashfs sysupgrade image) can be flashed
through the web interface (named "GoAhead") of the factory firmware.
However, as the factory firmware does not cleanly unmount the rootfs
before flashing, the device may hang instead of rebooting after
successful write. Power cycling the device gets you in OpenWrt where
the squashfs image may be flashed through normal sysupgrade procedure.
Signed-off-by: Vianney le Clément de Saint-Marcq <code@quartic.eu>
YouHua tech WR1200JS is an AC1200 router with 5 1Gb ports (4 Lan, 1 Wan)
and 1 USB 2.0 port.
Devices is base on MediaTek MT7621AT + MT7603E + MT7612E.
Specification:
- MT7612AT (880 MHz)
- 128 MB of RAM
- 16 MB of FLASH (SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 2T2R 2.4 GHz (MT7603E)
- 2T2R 5 GHz (MT7612E)
- 1x USB 2.0
- 10x LED (Power 2G 5G WPS Internet LAN4-1 USB)
- 3x button (reset wifi wps)
- DC jack for main power input (12V)
Installation:
1.) Press reset key 5 sec and restore the factory default
2.) Login webUI and change username to root and set a
new password
3.) Visit http://192.168.2.254/adm/telnetd.shtml and
turn on the telnet service
4.) Copy openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin
to a usb pan
5.) Plug the usb pan to the router, telnet to the router
and login by root
6.) cd /media/sda1 and check the initramfs file is there
7.) exec command:
mtd_write write openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin Kernel
8.) reboot and visit 192.168.1.1
Signed-off-by: Zheng Qian <sotux82@gmail.com>
The previous fw version require the replacement of the stock bootloader
with u-boot. This prevent an easy stock restore of the original fw.
Now a proper fw util has been developed to manage the stock jboot
bootloader. Therefore make sense have a fw image for the stock
bootloader.
The old fw configuration (u-boot) is not compatible with the new one
and will not be supported anymore.
So at the end 2 image can be generated:
1) factory image with jboot bootloader
openwrt-ramips-rt305x-dwr-512-b-squashfs-factory.bin
2) sysupgrade image with jboot bootloader
openwrt-ramips-rt305x-dwr-512-b-squashfs-sysupgrade.bin
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
The DWR-921-C1 Wireless Routers with LTE embedded modem is based on the
MT7620N SoC.
Specification:
* MediaTek MT7620N (580 Mhz)
* 64 MB of RAM
* 16 MB of FLASH
* 802.11bgn radio
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* 2x external, detachable (LTE) antennas
* UART header on PCB (57600 8n1)
* 6x LED (GPIO-controlled)
* 1x bi-color Signal Strength LED (GPIO-controlled)
* 2x button
* JBOOT bootloader
The status led has been assigned to the dwr-921-c1:green:sigstrength (lte
signal strength) led. At the end of the boot it is switched off and is
available for lte operation. Work correctly also during sysupgrade
operation.
Installation:
Apply factory image via d-link http web-gui.
How to revert to OEM firmware:
1.) Push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
2.) Upload original factory image via JBOOT http (IP: 192.168.123.254)
3.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
TP-Link TL-WR902AC v3 is a pocket-size dual-band (AC750) router
based on MediaTek MT7628N + MT7650E.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
* MT7650 ac chip isn't not supported by LEDE/OpenWrt at the moment.
Therefore 5Ghz won' work.
Flash instruction:
The only way to flash LEDE image in TL-WR902AC v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr902ac-v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Peter Lundkvist <peter.lundkvist@gmail.com>
[drop p2led_an pinmux, this pin isn't used as gpio, fix whitespace issues]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The DWR-116-A1/2 Wireless Router is based on the MT7620N SoC.
Specification:
MediaTek MT7620N (580 Mhz)
32 MB of RAM
8 MB of FLASH
802.11bgn radio
5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
2x external, non-detachable antennas
UART (J1 in A1, JP1 in A2) header on PCB (57600 8n1)
6x LED (GPIO-controlled), 2x button
JBOOT bootloader
Known issues:
WAN LED is drived by uartl tx pin. I decide to use this pin as
uartlite tx pin.
Installation:
Apply factory image via http web-gui.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
This board has:
- mt7621 SoC
- 8MB SPI flash
- 128MB RAM
- 5x ethernet ports from internal (SoC) switch
- 1x ethernet port sitting on gmac2 and IC+ phy (not yet supported)
- 3x PCIe slots
- 1x USB 2.0 and 1x USB 3.0
- sound based on wm8960
- SDXC card slot (full size)
First fw write from interactive u-boot menu, interrupt with 2.
After that sysupgrade.
Tested both with 4.9 and 4.14
Signed-off-by: Roman Yeryomin <roman@advem.lv>
ALFA Network AWUSFREE1 is an USB Wi-Fi N300 adapter based on MT7628.
Specification:
- MT7628AN (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 2T2R 2.4 GHz (MT7628) with external FEM (RFFM4203)
- 2x detachable antennas (RP-SMA)
- ASIX AX88772 USB to Ethernet bridge (connected with MT7628 PHY0)
- 4x LED (2 driven by GPIO)
- 1x button (reset)
- 1x mini USB for host and main power input
- UART header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Power device with reset button pressed and release it after ~5 sec.
2. Setup static IP 192.168.1.2/4 on your PC.
3. Go to 192.168.1.1 in browser and upload "sysupgrade" image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Tama Electric Axing W06 is a 2.4 GHz band 11n router, based on Mediatek
MT7688AN.
Specification:
- MT7688AN (575 MHz)
- 64 MB of RAM (DDR2 SDRAM)
- 16 MB of Flash (SPI)
- 1T1R 2.4 GHz
- 1x 10/100/1000 Mbps Ethernet
- 4x LEDs (GPIO connected: 3), 1x button
- 1x USB 2.0 Type-A (host)
- UART header on PCB (GND, RX, TX, Vcc from RJ45 side)
Flash instruction using sysupgrade image:
1. Connect micro-USB cable for power supply into W06 and turn on the
router
2. Connect to wifi with SSID "tama-*" with password. Complete SSID and
password are listed on the back of the router
3. Access to 192.168.1.1 and login with user name "admin" and password
empty
4. In firmware update(ファームウェア更新) page, click "参照" button
and click "ブラウザー" button to open file browser, select the
sysupgrade image and press OK button
5. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Use the generic board detection for the GnuBee Personal Cloud Two
instead of the target specific one as all recent additions are doing.
Fixup the pinmux to set all pins used as GPIO to the function GPIO.
Request pins where used.
Drop the i2c from the dts. There is nothing connected. While at it fix an
indentation issue and use references instead of duplicating the whole
node path.
Use the same switch config as for the GB-PC1 and drop the led trigger for
the not supported IP1001 phy connected to second rgmii.
Fixes: c60a21532b ("ramips: Add support for the GnuBee Personal Cloud Two")
Signed-off-by: Mathias Kresin <dev@kresin.me>
Use the generic board detection for the D-Link DAP-1522 A1 instead of the
target specific one as all recent additions are doing.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The watchdog kill command was meant for busybox watchdog. Busybox watchdog
was replaced by the procd watchdog mid 2013 with commit df7ce9301a
("busybox: disable the watchdog utility by default"), which makes the kill
command obsolete since quite some time.
Signed-off-by: Mathias Kresin <dev@kresin.me>
D-Link DAP-1522 is a wireless bridge/access point with 4 LAN
ports and a dual-band wireless chipset.
Specifications:
- Ralink RT2880
- 32 MB of RAM
- 4 MB of Flash
- 4x 10/100/1000 Mbps Ethernet (RTL8366SR)
- 802.11abgn (RT2850)
Flash Instructions:
1. Download lede-ramips-rt288x-dap-1522-a1-squashfs-factory.bin
2. Open the web interface and upload the image
Signed-off-by: George Hopkins <george-hopkins@null.net>
The GnuBee Personal Cloud Two crowdfunded on https://www.crowdsupply.com
It is a low-cost, low-power, network-attached storage device.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: DDR3 512 MB
- Flash: 32 MB
- Six SATA ports for 3.5" Drives
- One SDcard
- One USB 3.0
- Two USB 2.0
- Gigabit Ethernet: Three Ports
- UART 3.5mm Audio Jack or 3 pin header - 57600 8N1
- Three GPIOs available on a pin header
Flash instructions:
The GnuBee Personal Cloud Two ships with libreCMC installed.
libreCMC is a Free Software Foundation approved fork of LEDE/OpenWrt.
As such one can upgrade using the webinterface or sysupgrade.
Das U-Boot has multiple options for recovery or updates including :
- USB
- http
- tftp
Errata:
- While there are three ethernet ports, the third requires support for
the second GMAC. This will come in kernel 4.14.
- The first hard drive slot has a clearance issue with the two fan
headers. Workaround is to pull the headers out and connect the pins to
jumper wires.
- Using this device as a NAS is problematic with the 4.9 kernel as many
/dev/sdX reads throw silent errors. The current theory behind this is
some kind of unhandled DMA mapping error in the kernel. This is not an
issue with kernel 4.4.
Signed-off-by: L. D. Pinney <ldpinney@gmail.com>
Signed-off-by: Rosen Penev <rosenp@gmail.com>
TP-Link Archer C50 v3 is a router with 5-port FE switch and
non-detachable antennas. It's based on MediaTek MT7628N+MT7612E.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 7x LED (GPIO-controlled*), 2x button, power switch
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Flash instruction:
The only way to flash LEDE image in ArcherC50v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt7628-ArcherC50v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
Convert userspace code to use generic device-tree compatible board
detection method. Users of the existing code will have to use
sysupgrade -F once to switch to the new generic board naming.
Properly setup pinctrl fixing the switch port LEDs.
Fixes commit 9c4fe103cb (ramips: add support for ZBT-WE1226)
Reported-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Widora has updated their Widora Neo board recently.
The new model uses 32MB WSON-8 factor SPI flash
instead of the original 16MB SOP-8 factor SPI flash.
All the other hardware components are the same as
the first revision.
Detailed hardware specs listed below:
CPU: MTK MT7688AN
RAM: 128MB DDR2
ROM: 32MB WSON-8 factor SPI Flash (Winbond)
WiFi: Built-in 802.11n 150Mbps?
Ethernet: 10/100Mbps x1
Audio codec: WM8960
Other IO: USB OTG;
USB Power+Serial (CP2104);
3x LEDs (Power, LAN, WiFi);
2x Keys (WPS, CPU Reset)
1x Audio In/Out
1x IPEX antenna port
1x Micro SD slot
Signed-off-by: Jackson Ming Hu <huming2207@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Rename the Widora neo by adding a flash size prefix. Move the common parts
into a dtsi to be prepare everything for upcomming support of the 32MB
version.
Migrate the Widora neo to the generic board detection as well.
Signed-off-by: Mathias Kresin <dev@kresin.me>