I-O DATA WN-AX1167GR is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7621A.
Specification:
- MT7621A (2-Cores, 4-Threads)
- 64 MB of RAM (DDR2)
- 16 MB of Flash (SPI)
- 2T2R 2.4/5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 2x LEDs, 4x keys (2x buttons, 1x slide switch)
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 115200 bps (U-Boot, OpenWrt)
Stock firmware:
In the stock firmware, WN-AX1167GR has two os images each composed of
Linux kernel and rootfs.
These images are stored in "Kernel" and "app" partition of the
following partitions, respectively.
(excerpt from dmesg):
MX25L12805D(c2 2018c220) (16384 Kbytes)
mtd .name = raspi, .size = 0x01000000 (16M) .erasesize = 0x00010000 (64K) .numeraseregions = 0
Creating 10 MTD partitions on "raspi":
0x000000000000-0x000001000000 : "ALL"
0x000000000000-0x000000030000 : "Bootloader"
0x000000030000-0x000000040000 : "Config "
0x000000040000-0x000000050000 : "Factory"
0x000000050000-0x000000060000 : "iNIC_rf"
0x000000060000-0x0000007e0000 : "Kernel"
0x000000800000-0x000000f80000 : "app"
0x000000f90000-0x000000fa0000 : "Key"
0x000000fa0000-0x000000fb0000 : "backup"
0x000000fb0000-0x000001000000 : "storage"
The flag for boot partition is stored in "Key" partition, and U-Boot
reads this and determines the partition to boot.
If the image that U-Boot first reads according to the flag is
"Bad Magic Number", U-Boot then tries to boot from the other image.
If the second image is correct, change the flag to the number
corresponding to that image and boot from that image.
(example):
## Booting image at bc800000 ...
Bad Magic Number,FFFFFFFF
Boot from KERNEL 1 !!
## Booting image at bc060000 ...
Image Name: MIPS OpenWrt Linux-4.14.50
Image Type: MIPS Linux kernel Image (lzma compressed)
Data Size: 1865917 Bytes = 1.8 MB
Load Address: 80001000
Entry Point: 80001000
Verifying Checksum ... OK
Uncompressing Kernel Image ... OK
raspi_erase_write: offs:f90000, count:34
.
.
Done!
Starting kernel ...
Flash instruction using factory image:
1. Connect the computer to the LAN port of WN-AX1167GR
2. Connect power cable to WN-AX1167GR and turn on it
3. Access to "192.168.0.1" on the web browser and open firmware
update page ("ファームウェア")
4. Select the OpenWrt factory image and perform firmware update
5. On the initramfs image, execute "mtd erase firmware" to erase stock
firmware and execute sysupgrade with sysupgrade image for WN-AX1167GR
6. Wait ~180 seconds to complete flasing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Specification:
- System-On-Chip: MediaTek MT7628NN
- CPU/Speed: 580 MHz
- Flash-Chip: ELM Technology GD25Q64
- Flash size: 8192 KiB
- RAM: 64 MiB
- Wireless No1: SoC-integrated: MT7628N 2.4GHz 802.11bgn
Currently the only method to install openwrt for the first time is via
TFTP recovery. After first install you can use regular updates.
Flash instructions:
1) To flash the recovery image, start a TFTP server with IP address
192.168.0.66 and serve the recovery image named tp_recovery.bin.
2) Connect your device to the LAN port, then press the WPS and Reset
button and power it up. Keep pressing the WPS/Reset button for
10 seconds or until the lock LED is lighting up.
It will try to download the recovery image and flash it.
It can take up to 2-3 minutes to finish. When it reaches 100%, the
router will reboot itself.
Signed-off-by: Romain MARIADASSOU <roms2000@free.fr>
Specification:
- System-On-Chip: MT7628N/N
- CPU/Speed: 580 MHz
- Flash-Chip: Winbond w25q256
- Flash size: 32768 KiB
- RAM: 128 MiB
- 5x 10/100 Mbps Ethernet
- 4x external, non-detachable antennas
- UART (J1) header on PCB (57600 8n1)
- Wireless No1 (2T2R): SoC-integrated: MT7628N 2.4GHz 802.11bgn
- Wireless No2 (2T2R): On-board chip: MT7612EN 5GHz 802.11ac
- USB: Yes 1 x 2.0
- 4x LED, 3x button
The device supports dual boot mode. So we use only first half of flash.
Flash instruction:
The only way to flash OpenWrt image is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-zyxel_keenetic-extra-ii-squashfs-factory.bin"
to "kextra2_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power led start blinking.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
This commit adds support for the MikroTik RouterBOARD RBM11g.
=Hardware=
The RBM11g is a mt7621 based device featuring one GbE port and one
miniPCIe slot with a sim card socket and USB 2.0.
==Switch==
The single onboard Ethernet port is connected the CPU directly.
The internal switch of the mt7621 SoC is disabled.
==Flash==
The device has one spi nor flash chip. It is a 128 Mbit winbond 25Q128FVS
connected to CS0.
==PCIe==
The board features a single miniPCIe slot. It has a dedicated mini SIM
socket and a USB 2.0 port. Power to the miniPCIe slot is controlled via
GPIO9.
==USB==
There are no external USB ports.
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack (center-positive). The input voltage range is 11-32 V.
==Serial port==
The device does have an onboard UART on an unpopulated header next to the
flash chip:
GND: pin 2
TX: pin 7
RX: pin 6
Settings: 115200, 8N1
See below illustration for positioning of the header.
0 = screw hole
* = some pin
T = TX pin
R = RX pin
G = GND pin
Pinout:
+---------------
|O
| __
| / \
| \__/
|
|
|
| +---+
| |RAM|
| +--+ | |
| |**| <- unpopulated header with UART
| |*T| +---+
| |R*| +--------+
| |**| | |
| |G*| | CPU |
| +--+ | |
| +--+ | |
| | | +--------+
| +--+ <- flash chip
|O
| +-----+
| | |
|+--+ | |
|| | | |
+---------------------
=Installation=
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM11G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin" in the
output directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the
created license file.**
When rebooted the board will try booting via ethernet first. If your
board does not boot via ethernet automatically you will have to attach
to the serial port and set ethernet as boot device within RouterBOOT.
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm11g-initramfs-kernel.bin"
initramfs image
2. Connect to ethernet port on board
3. Power on the board
4. Wait for OpenWrt to boot
Right now OpenWrt will be running with a SSH server listening. Now
OpenWrt must be flashed to the devices flash:
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin"
to the device using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm11g-squashfs-sysupgrade.bin"
Once the flashing completes the board will reboot. Disconnect from the
devices ethernet port or stop the DHCP/TFTP server to prevent the device
from booting via ethernet again.
The device should now boot straight to OpenWrt.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
Move to i2c pins pinmux node to the pinctrl node.
Fixes: a0685deec4 ("ramips: Add i2c support for mt7620n")
Signed-off-by: Andrey Jr. Melnikov <temnota.am@gmail.com>
[fix commit message]
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specification:
- System-On-Chip: MT7620A
- CPU/Speed: 580 MHz
- Flash-Chip: Winbond 25Q64BVSIG
- Flash size: 8192 KiB
- RAM: 64 MiB
- Wireless No1: SoC-integrated: MT7620A 2.4GHz 802.11bgn
- Wireless No2: On-board chip: MT7610EN 5GHz 802.11ac
- Switch: RTL8367RB Gigabit Switch
- USB: Yes 1 x 2.0
Preparing a TFTP recovery image for initial flashing:
Currently the only method to install openwrt for the first time is via
TFTP download in u-boot. After first install you can use regular updates.
WARNING: This method also overwrites the bootloader partition!
Create a TFTP recovery image:
1) Download a stock TP-Link Firmware file here:
https://www.tp-link.com/en/download/Archer-C2_V1.html#Firmware
2) Extract u-boot from the binary file:
#> dd if=c2v1_stock_firmware.bin of=c2v1_uboot.bin bs=1 skip=512 count=131072
3) Now merge the sysupgrade image and the u-boot into one binary:
#> cat c2v1_uboot.bin openwrt-squashfs-sysupgrade.bin > ArcherC2V1_tp_recovery.bin
The resulting image can be flashed via TFTP recovery mode.
Flash instructions:
1) To flash the recovery image, start a TFTP server from IP address
192.168.0.66 and serve the recovery image named
ArcherC2V1_tp_recovery.bin.
2) Connect your device to the LAN port, then press the WPS/Reset button
and power it up. Keep pressing the WPS/Reset button for 10 seconds.
It will try to download the recovery image and flash it.
It can take up to 20-25 minutes to finish. When it reaches 100%, the
router will reboot itself.
Signed-off-by: Serge Vasilugin <vasilugin@yandex.ru>
Signed-off-by: Franz Flasch <franz.flasch@gmx.at>
The rtl8367b driver never supported a mdio property and it is quite
likely that the switch never worked for the board.
Use the mii-bus property instead to manage the switch via a mdio bus.
Signed-off-by: Franz Flasch <franz.flasch@gmx.at>
Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped with external PA.
- UART: 1 x UART on PCB - 57600 8N1
Flash instruction:
The U-boot is based on Ralink SDK so we can flash the firmware using UART:
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART line as described on the PCB.
4. Power up the device and press 2, follow the instruction to
set device and tftp server IP address and input the firmware
file name. U-boot will then load the firmware and write it into
the flash.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This commit adds support for the Mikrotik RouterBOARD RBM33g.
=Hardware=
The RBM33g is a mt7621 based device featuring three gigabit ports, 2
miniPCIe slots with sim card sockets, 1 M.2 slot, 1 USB 3.0 port and a male
onboard RS-232 serial port. Additionally there are a lot of accessible
GPIO ports and additional buses like i2c, mdio, spi and uart.
==Switch==
The three Ethernet ports are all connected to the internal switch of the
mt7621 SoC:
port 0: Ethernet Port next to barrel jack with PoE printed on it
port 1: Innermost Ethernet Port on opposite side of RS-232 port
port 2: Outermost Ethernet Port on opposite side of RS-232 port
port 6: CPU
==Flash==
The device has two spi flash chips. The first flash chips is rather small
(512 kB), connected to CS0 by default and contains only the RouterBOOT
bootloader and some factory information (e.g. mac address).
The second chip has a size of 16 MB, is by default connected to CS1 and
contains the firmware image.
==PCIe==
The board features three PCIe-enabled slots. Two of them are miniPCIe
slots (PCIe0, PCIe1) and one is a M.2 (Key M) slot (PCIe2).
Each of the miniPCIe slots is connected to a dedicated mini SIM socket
on the back of the board.
Power to all three PCIe-enabled slots is controlled via GPIOs on the
mt7621 SoC:
PCIe0: GPIO9
PCIe1: GPIO10
PCIe2: GPIO11
==USB==
The board has one external USB 3.0 port at the rear. Additionally PCIe
port 0 has a permanently enabled USB interface. PCIe slot 1 shares its
USB interface with the rear USB port. Thus only either the rear USB port
or the USB interface of PCIe slot 1 can be active at the same time. The
jumper next to the rear USB port controls which one is active:
open: USB on PCIe 1 is active
closed: USB on rear USB port is active
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack. The input voltage range is 11-32 V.
=Installation=
==Prerequisites==
A USB -> RS-232 Adapter and a null modem cable are required for
installation.
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM33G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" in the output
directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the created
license file.**
Serial settings: 115200 8N1
The installation is a two-step process. First the
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" must be booted
via tftp:
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin"
initramfs image
2. Connect to WAN port (left side, next to sys-LED and power indicator)
3. Connect to serial port of board
4. Power on board and enter RouterBOOT setup menu
5. Set boot device to "boot over ethernet"
6. Set boot protocol to "dhcp protocol" (can be omitted if DHCP server
allows dynamic bootp)
6. Save config
7. Wait for board to boot via Ethernet
On the serial port you should now be presented with the OpenWRT boot log.
The next steps will install OpenWRT persistently.
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" to the device
using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin"
Once the flashing completes reboot the router and let it boot from flash.
It should boot straight to OpenWRT.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
ELECOM WRC-1167GHBK2-S is a 2.4/5 GHz band 11ac router, based on
MediaTek MT7621A.
Specification:
- MT7621A (2-Cores, 4-Threads)
- 128 MB of RAM (DDR3)
- 16 MB of Flash (SPI)
- 2T2R 2.4/5 GHz
- MediaTek MT7615D
- 5x 10/100/1000 Mbps Ethernet
- 6x LEDs, 2x keys
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 57600 bps
Flash instruction using factory image:
1. Rename the factory image to "wrc-1167ghbk2-s_v0.00.bin"
2. Connect the computer to the LAN port of WRC-1167GHBK2-S
3. Connect power cable to WRC-1167GHBK2-S and turn on it
4. Access to "http://192.168.2.1/details.html" and open firmware
update page ("手動更新(アップデート)")
5. Select the factory image and click apply ("適用") button
6. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
TP-Link TL-WR842N v5 are simple N300 router with 5-port FE switch and
non-detachable antennas. Its very similar to TP-Link TL-MR3420 V5.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- USB 2.0 Port
- UART (J1) header on PCB (115200 8n1)
- 7x LED, 2x button, power input switch
Flash instruction:
The only way to flash OpenWrt image in wr842nv5 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "lede-ramips-mt7628-tplink_tl-wr842n-v5-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
I found mt7688 watchdog not working. The watchdog registers are identical
for mt7621 and mt7628/mt7688. The first watchdog related register is at
0x10000100, the last one - a 16bit sized - at 0x10000128.
Set the correct register address and size in the dtsi file to get the
watchdog working.
Signed-off-by: lbzhung <gewalalb@gmail.com>
[add commit message]
Signed-off-by: Mathias Kresin <dev@kresin.me>
I-O DATA WN-GX300GR is a 2.4 GHz band 11n router, based on MediaTek
MT7621S.
Specification:
- MT7621S (1-Core, 2-Threads)
- 64 MB of RAM
- 8 MB of Flash (SPI)
- 2T2R 2.4 GHz
- 5x 10/100/1000 Mbps Ethernet
- 2x LEDs, 4x keys (2x buttons, 1x slide switch)
- UART header on PCB
- Vcc, GND, TX, RX from ethernet port side
- baudrate: 115200 bps (U-Boot, OpenWrt)
Flash instruction using initramfs image:
1. Connect serial cable to UART header
2. Rename OpenWrt initramfs image for WN-GX300GR to "uImageWN-GX300GR"
and place it in the TFTP directory
3. Set the IP address of the computer to 192.168.99.8, connect to the
LAN port of WN-GX300GR, and start the TFTP server on the computer
4. Connect power cable to WN-GX300GR and turn on the router
5. Press "1" key on the serial console to interrupt boot process on
U-Boot, press Enter key 3 times and start firmware download via TFTP
6. WN-GX300GR downloads initramfs image and boot with it
7. On the initramfs image, execute "mtd erase firmware" to erase stock
firmware and execute sysupgrade with sysupgrade image for WN-GX300GR
8. Wait ~150 seconds to complete flasing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Node /cpus/cpu@0 has a unit name, but no reg property
Node /cpus/cpu@1 has a unit name, but no reg property
Node /cpuintc@0 has a unit name, but no reg property
Node /cpuclock@0 has a unit name, but no reg property
Node /sysclock@0 has a unit name, but no reg property
Node /pcie@1e140000/pcie0 missing ranges for PCI bridge (or not a bridge)
Node /pcie@1e140000/pcie0 missing bus-range for PCI bridge
Node /pcie@1e140000/pcie1 missing ranges for PCI bridge (or not a bridge)
Node /pcie@1e140000/pcie1 missing bus-range for PCI bridge
Node /pcie@1e140000/pcie2 missing ranges for PCI bridge (or not a bridge)
Node /pcie@1e140000/pcie2 missing bus-range for PCI bridge
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Define USB port power on/off GPO as voltage regulator type instead of
exposing as a normal GPIO.
The GPO is now controlled by the USB driver via the voltage regulator
definition. The regulator is of fixed output type (5V for USB) hence the
GPO switches power on/off to USB pin 1 (Vcc)
USB port power is enabled on driver load and disabled on driver unload.
Enable kernel support for fixed voltage regulator types on mt7621.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
I was carrying a local commit that added the sdhci stuff and missed it
as a result.
Also fix the rgmii3 thing in the PC2 DTS file as that's bogus and causes
a dmesg warning that it's bogus.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
That commit exposed a bug in the DTS files used by mt7621 where the wrong
reg value for pcie1 (and potentially pcie2) was being used. This was
causing WiFi failures for interfaces in pcie1.
eg. 2.4GHz working but not 5GHz.
As all of these dts entries are already specified in mt7621.dtsi, remove
them.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
There's nothing connected to i2c on this board, so remove it.
Also edited the gpio group to match the PC2 as they're the same.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
There was an error on initial commit, the proper soc is mt7620n (which is
more limited than mt7620a). Moreover, there is a battery management
controller connected to the i2c port of the mt7620n. I have a small piece
of i2c code to get battery level coming.
Signed-off-by: Matthias Badaire <mbadaire@gmail.com>
BOCCO is a communication robot provided by YUKAI Engineering Inc.
SoC: MT7620A
MEM: 256MB
Flash: 8MB
NAND: 512MB (non support)
Include Sound DAC and AMP.
No Wired Ethernet.
Signed-off-by: YuheiOKAWA <tochiro.srchack@gmail.com>
As the Interrupts for the PCI adapters are listed in
devicetree we shouldn't need to have them explicit in the code.
The simplest way to do this is to use of_irq_parse_and_map_pci()
and specify an interrupt-map which identifies the different
PCI hosts by bus/slot numbers.
This has the advantage that the hwirq number are mapped to virq
numbers for us, so the ugly hack can go.
Signed-off-by: NeilBrown <neil@brown.name>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Splitted out the dts file and create the new dts for the 256 MByte RAM and
the 512 MB RAM version.
Migrate both versions to the common board detection.
The install the 512 MByte Version on a board running the 256 MByte image,
a forceful sysupgrade with the -F flag is required.
Signed-off-by: Davide Ammirata <list@davidea.it>
The RavPower WD03 is a battery powered SD card reader and a USB port.
Specifications:
SOC: MediaTek MT7620N
BATTERY: 6000mah
WLAN: 802.11bgn
LAN: 1x 10/100 Mbps Ethernet
USB: 1x USB 2.0 (Type-A)
RAM: PM Tech PMD708416CTR-5CN 32 MB
FLASH: Holtek HT66F40 - 8 MB Flash
LED: Power button and 4 leds to indicate power level of the
battery (could not get control of that)
INPUT: Power, reset button
OTHER: USB SD-Card reader with card detect on GPIO#42
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- installation from tftp
- OpenWRT sysupgrade (Preserving and non-preserving)
- LEDs
- Buttons
Installation:
- Download the sysupgrade image
- Place it in the root of a clean TFTP server running on your computer.
- Rename the image to "kernel" — be sure there is no file extension.
- Plug the WD03 into your computer via ethernet.
- Set your computer to use 10.10.10.254 as its IP address.
- With your WD03 shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The WD03 (10.10.10.128) will look for your computer at 10.10.10.254
and install the kernel file. Once it has finished installation of the
kernel file, it will search for a (nonexistent) rootfs file — when it
begins searching for this file, shut down the WD03 by holding the
power button normally.
- Start up your WD03 normally.
Signed-off-by: Matthias Badaire <mbadaire@gmail.com>
There is no pinmux group "jtag" for mt7628 and the pinmux driver fails
to load due to the use of the not existing group.
Fixes: FS#1515
Signed-off-by: Mathias Kresin <dev@kresin.me>
The pins are used as (LED) GPIOs and can't be used at the same time as
hardware controlled ephy (LED) pins.
Fixes: FS#1500
Signed-off-by: Mathias Kresin <dev@kresin.me>
In the new USB phy driver, it checks the compatible string before
attempting to iomap its mem resource and do the extra PHY init
Signed-off-by: Felix Fietkau <nbd@nbd.name>
The Zorlik ZL5900V2 is an unbranded clone of HAME MPR-A1/2. It is
marketed as "3G Wi-Fi Router". Only the PCB has the model name
"ZL5900V2" printed on it.
Specifications:
- Ralink RT5350F (360 MHz)
- 32 MB RAM
- 8 MB Flash
- 802.11bgn 1T1R
- 1x 10/100 Mbps Ethernet
- 1x USB 2.0 (Type-A)
- 5200 mAh battery
The ramdisk image (not the squashfs sysupgrade image) can be flashed
through the web interface (named "GoAhead") of the factory firmware.
However, as the factory firmware does not cleanly unmount the rootfs
before flashing, the device may hang instead of rebooting after
successful write. Power cycling the device gets you in OpenWrt where
the squashfs image may be flashed through normal sysupgrade procedure.
Signed-off-by: Vianney le Clément de Saint-Marcq <code@quartic.eu>
YouHua tech WR1200JS is an AC1200 router with 5 1Gb ports (4 Lan, 1 Wan)
and 1 USB 2.0 port.
Devices is base on MediaTek MT7621AT + MT7603E + MT7612E.
Specification:
- MT7612AT (880 MHz)
- 128 MB of RAM
- 16 MB of FLASH (SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 2T2R 2.4 GHz (MT7603E)
- 2T2R 5 GHz (MT7612E)
- 1x USB 2.0
- 10x LED (Power 2G 5G WPS Internet LAN4-1 USB)
- 3x button (reset wifi wps)
- DC jack for main power input (12V)
Installation:
1.) Press reset key 5 sec and restore the factory default
2.) Login webUI and change username to root and set a
new password
3.) Visit http://192.168.2.254/adm/telnetd.shtml and
turn on the telnet service
4.) Copy openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin
to a usb pan
5.) Plug the usb pan to the router, telnet to the router
and login by root
6.) cd /media/sda1 and check the initramfs file is there
7.) exec command:
mtd_write write openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin Kernel
8.) reboot and visit 192.168.1.1
Signed-off-by: Zheng Qian <sotux82@gmail.com>
The previous fw version require the replacement of the stock bootloader
with u-boot. This prevent an easy stock restore of the original fw.
Now a proper fw util has been developed to manage the stock jboot
bootloader. Therefore make sense have a fw image for the stock
bootloader.
The old fw configuration (u-boot) is not compatible with the new one
and will not be supported anymore.
So at the end 2 image can be generated:
1) factory image with jboot bootloader
openwrt-ramips-rt305x-dwr-512-b-squashfs-factory.bin
2) sysupgrade image with jboot bootloader
openwrt-ramips-rt305x-dwr-512-b-squashfs-sysupgrade.bin
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
The Ralink USB PHY driver merged into mainline has a slightly different
device tree binding than the patch that was used with linux 4.9.
The new driver requires a `ralink,sysctl` node pointing to the `syscon`
node.
This patch also sets `#phy-cells` to 0, as recommended by the mainline
documentation [1].
[1] Documentation/devicetree/bindings/phy/ralink-usb-phy.txt
Signed-off-by: Vianney le Clément de Saint-Marcq <code@quartic.eu>
Supports IPv4 flow offloading on MT7621 for Routing, SNAT and DNAT
Supported are regular ethernet->ethernet connections, including one
802.1q VLAN and/or PPPoE encapsulation
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
The DWR-921-C1 Wireless Routers with LTE embedded modem is based on the
MT7620N SoC.
Specification:
* MediaTek MT7620N (580 Mhz)
* 64 MB of RAM
* 16 MB of FLASH
* 802.11bgn radio
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* 2x external, detachable (LTE) antennas
* UART header on PCB (57600 8n1)
* 6x LED (GPIO-controlled)
* 1x bi-color Signal Strength LED (GPIO-controlled)
* 2x button
* JBOOT bootloader
The status led has been assigned to the dwr-921-c1:green:sigstrength (lte
signal strength) led. At the end of the boot it is switched off and is
available for lte operation. Work correctly also during sysupgrade
operation.
Installation:
Apply factory image via d-link http web-gui.
How to revert to OEM firmware:
1.) Push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
2.) Upload original factory image via JBOOT http (IP: 192.168.123.254)
3.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
WHR-G300N has 5 ethernet ports (lan: 4, wan: 1), but there was no
correct configuration in 02_network script and 6 ports was configured
on the switch.
Also, since the MAC address was not acquired from factory partition,
incorrect values was set to LAN and WAN interfaces.
This commit fixes these issues.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
TP-Link TL-WR902AC v3 is a pocket-size dual-band (AC750) router
based on MediaTek MT7628N + MT7650E.
Specification:
- MediaTek MT7628N/N (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
* MT7650 ac chip isn't not supported by LEDE/OpenWrt at the moment.
Therefore 5Ghz won' work.
Flash instruction:
The only way to flash LEDE image in TL-WR902AC v3 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr902ac-v3-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Peter Lundkvist <peter.lundkvist@gmail.com>
[drop p2led_an pinmux, this pin isn't used as gpio, fix whitespace issues]
Signed-off-by: Mathias Kresin <dev@kresin.me>
The DWR-116-A1/2 Wireless Router is based on the MT7620N SoC.
Specification:
MediaTek MT7620N (580 Mhz)
32 MB of RAM
8 MB of FLASH
802.11bgn radio
5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
2x external, non-detachable antennas
UART (J1 in A1, JP1 in A2) header on PCB (57600 8n1)
6x LED (GPIO-controlled), 2x button
JBOOT bootloader
Known issues:
WAN LED is drived by uartl tx pin. I decide to use this pin as
uartlite tx pin.
Installation:
Apply factory image via http web-gui.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Revert the changes I applied to aa5014dd1a ("ramips: mt7620n: enable
port 4 as EPHY by default").
The driver expects a node mdio-bus to be present, regardless of the
actual node status. If the node is missing the driver fails to load with
mtk_soc_eth 10100000.ethernet: no mdio-bus child node found
Disable port4 by default again. If the port is enabled but not present, a
"invalid port id 4" warning is shown during boot.
Fixes: FS#1428
Signed-off-by: Mathias Kresin <dev@kresin.me>
According to the datasheet the mt7620n have a fixed switch configuration
with 5 ephy (10/100) port. No RGMII configuration is possible.
Drop the mdio node as well. Without RGMII, the mdio node doesn't make any
sense
Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
[drop mdio node, enable port4 by default]
Signed-off-by: Mathias Kresin <dev@kresin.me>
This board has:
- mt7621 SoC
- 8MB SPI flash
- 128MB RAM
- 5x ethernet ports from internal (SoC) switch
- 1x ethernet port sitting on gmac2 and IC+ phy (not yet supported)
- 3x PCIe slots
- 1x USB 2.0 and 1x USB 3.0
- sound based on wm8960
- SDXC card slot (full size)
First fw write from interactive u-boot menu, interrupt with 2.
After that sysupgrade.
Tested both with 4.9 and 4.14
Signed-off-by: Roman Yeryomin <roman@advem.lv>
The device has a second uart accessible via pin headers, so enable it.
There is also a green power led which was not enabled previously.
Enable it too and use it as status LED.
Signed-off-by: Benjamin Valentin <benjamin.valentin@volatiles.de>
ALFA Network AWUSFREE1 is an USB Wi-Fi N300 adapter based on MT7628.
Specification:
- MT7628AN (580 MHz)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 2T2R 2.4 GHz (MT7628) with external FEM (RFFM4203)
- 2x detachable antennas (RP-SMA)
- ASIX AX88772 USB to Ethernet bridge (connected with MT7628 PHY0)
- 4x LED (2 driven by GPIO)
- 1x button (reset)
- 1x mini USB for host and main power input
- UART header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Power device with reset button pressed and release it after ~5 sec.
2. Setup static IP 192.168.1.2/4 on your PC.
3. Go to 192.168.1.1 in browser and upload "sysupgrade" image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Tama Electric Axing W06 is a 2.4 GHz band 11n router, based on Mediatek
MT7688AN.
Specification:
- MT7688AN (575 MHz)
- 64 MB of RAM (DDR2 SDRAM)
- 16 MB of Flash (SPI)
- 1T1R 2.4 GHz
- 1x 10/100/1000 Mbps Ethernet
- 4x LEDs (GPIO connected: 3), 1x button
- 1x USB 2.0 Type-A (host)
- UART header on PCB (GND, RX, TX, Vcc from RJ45 side)
Flash instruction using sysupgrade image:
1. Connect micro-USB cable for power supply into W06 and turn on the
router
2. Connect to wifi with SSID "tama-*" with password. Complete SSID and
password are listed on the back of the router
3. Access to 192.168.1.1 and login with user name "admin" and password
empty
4. In firmware update(ファームウェア更新) page, click "参照" button
and click "ブラウザー" button to open file browser, select the
sysupgrade image and press OK button
5. Wait ~150 seconds to complete flashing
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>