This patch adds support for the Netgear WNDAP620 and WNDAP660,
they are similar devices, but due to the LAN LED configuration,
the switch setup and WIFI configuration each gets a different
device target.
Hardware Highlights WNDAP620:
CPU: AMCC PowerPC APM82181 at 1000 MHz
DRAM: 128 MB, 2 x 64 MiB DDR2 Hynix H5PS5162GF
CPU: AMCC PowerPC APM82181 at 1000 MHz
FLASH: 32 MiB, NAND SLC, Hynix HY27US08561A
Ethernet: RealTek RTL8363SB 2x2-Port Switch PHY - Only 1 GBit Port (POE)
Wifi: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Serial: console port with RJ45 Interface (9600-N-8-1)
LEDS: Power, LAN-Activity, dual color LAN-Linkspeed, 2.4GHz, 5GHz LEDs
Button: Soft Reset Button
Antennae: 3 internal dual-band antennae + 3 x RSMA for external antennaes
Hardware Highlights WNDAP660:
CPU: AMCC PowerPC APM82181 at 1000 MHz + 2 Heatsinks
DRAM: 256 MB, 2 x 128 MiB DDR2
FLASH: 32 MiB, NAND SLC, Hynix HY27US08561A
Ethernet: RealTek RTL8363SB 2x2-Port Switch PHY (POE)
Wifi1: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Wifi2: Atheros AR9380 minipcie - Dual-Band - 3x3:3
Serial: console port with RJ45 Interface (9600-N-8-1)
LEDS: Power, LAN-Activity, 2x dual color LAN-Linkspeed, 2.4GHz, 5GHz LEDs
Button: Soft Reset Button
Antennae: 6 internal dual-band antennae + 3 x RSMA for external antennaes
Flashing requirements:
- needs a tftp server at 192.168.1.10/serverip.
- special 8P8C(aka RJ45)<->D-SUB9 Console Cable
("Cisco Console Cable"). Note: Both WNDAP6x0 have
a MAX3232 transceivers, hence no need for any separate
CMOS/TTL level shifters.
External Antenna:
The antennae mux is controlled by GPIO 11 and GPIO14. Valid Configurations:
= Config# = | = GPIO 11 = | = GPIO 14 = | ===== Description =====
1. | 1 / High | 0 / Low | Use the internal antennae (default)
2. | 0 / Low | 1 / High | Use the external antennae
The external antennaes are only meant for the 2.4 GHz band.
One-way Flashing instructions via u-boot:
0. connect the serial cable to the RJ45 Console Port
Note: This requires a poper RS232 and not a TTL/USB adaptor.
1. power up the AP and interrupt the u-boot process at
'Hit any key to stop autoboot'
2. setup serverip and ipaddr env settings
Enter the following commands into the u-boot shell
# setenv ipaddr 192.168.1.1
# setenv serverip 192.168.1.10
3. download the factory.img image to the AP
Enter the following commands into the u-boot shell
# tftp ${kernel_addr_r} openwrt-apm821xx-nand-netgear_wndap660-squashfs-factory.img
4. verfiy image integrity
Enter the following commands into the u-boot shell
# crc32 $fileaddr $filesize
If the calculated crc32 checksum does not match, go back to step 3.
5. flash the image
Enter the following commands into the u-boot shell
# nand erase 0x110000 0x1bd0000
# nand write ${kernel_addr_r} 0x110000 ${filesize}
6. setup uboot environment
Enter the following commands into the u-boot shell
# setenv bootargs
# setenv fileaddr
# setenv filesize
# setenv addroot 'setenv bootargs ${bootargs} root=/dev/ubiblock0_0'
# setenv owrt_boot 'nboot ${kernel_addr_r} nand0 0x110000; run addroot; run addtty; bootm ${kernel_addr_r}'
# setenv bootcmd 'run owrt_boot'
# saveenv
7. boot
# run bootcmd
Booting initramfs instructions via u-boot:
Follow steps 0 - 2 from above.
3. boot initramfs
Enter the following commands into the u-boot shell
# tftp ${kernel_addr_r} openwrt-apm821xx-nand-netgear_wndap660-initramfs-kernel.bin
# run addtty
# bootm ${kernel_addr_r}
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch adds u-boot environment access to the MX60(W) target.
"The environment size is one NAND block (128KiB on Buckminster).
We allocate four NAND blocks to deal with bad blocks which may
exist in the saved environment"
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
All apm821xx devices use u-boot and most of them have
an accessible u-boot environment. This patch adds the
necessary template file, but does not add the
uboot-envtools package to any of the targets.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Also update the U-Boot BSP patch for I2SE Duckbill devices
and remove upstreamed patch for LibreSSL support.
Signed-off-by: Michael Heimpold <mhei@heimpold.de>
In dtc version 1.4.6 the macro names in header include guards changed,
but the build relies on them matching in order to replace selected
headers. This is a horrible hack to work around this.
Signed-off-by: Thomas Nixon <tom@tomn.co.uk>
ls1012afrdm was no longer supported in NXP Layerscape SDK.
Instead a new board ls1012afrwy was introduced in LSDK.
This patch is to drop ls1012afrdm and add ls1012afrwy support.
Since only 2MB NOR flash could be used, we just put u-boot
and firmware on NOR flash, and put kernel/dtb/rootfs on SD
card.
The Layerscape FRWY-LS1012A board is an ultra-low-cost
development platform for LS1012A Series Communication
Processors built on Arm Cortex-A53. This tool refines the
FRDM-LS1012A with more features for a better hands-on experience
for IoT, edge computing, and various advanced embedded
applications. Features include easy access to processor I/O,
low-power operation, micro SD card storage, an M2 connector, a
small form factor, and expansion board options via mikroBUS Click
Module. The MicroBUS Module provides easy expansion via hundreds
of powerful modules supporting sensors, actuators, memories,
and displays.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
NOR/QSPI Flash on Layerscape board only has limited 64MB memory size.
Since some boards (ls1043ardb/ls1046ardb/ls1088ardb/ls1021atwr)
could support SD card boot, we added SD boot support for them to put
all things on SD card to meet large memory requirement.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The NXP TWR-LS1021A module is a development system based
on the QorIQ LS1021A processor.
- This feature-rich, high-performance processor module can
be used standalone or as part of an assembled Tower System
development platform.
- Incorporating dual Arm Cortex-A7 cores running up to 1 GHz,
the TWR-LS1021A delivers an outstanding level of performance.
- The TWR-LS1021A offers HDMI, SATA3 and USB3 connectors as
well as a complete Linux software developer's package.
- The module provides a comprehensive level of security that
includes support for secure boot, Trust Architecture and
tamper detection in both standby and active power modes,
safeguarding the device from manufacture to deployment.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to implement u-boot environment txt files
to support OpenWrt boot for all layerscape devices.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The u-boot source code had been migrated to codeaurora
for LSDK-18.06 release and the future release. This
patch is to update u-boot to LSDK-18.06 for both
uboot-layerscape and uboot-layerscape-armv8_32b packages.
Besides, this patch also introduced some other changes.
- Reworked uboot-layerscape makefile to make it more
readable.
- Define package in uboot-layerscape-armv8_32b for each board.
- Fixed u-boot package selection in target image makefile.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Dropped uboot-layerscape patches which were environemnt patches.
We will make u-boot environment binaries with a txt file for all
devices.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The NanoPi NEO2 is a small Allwinner H5 based board available with
different DRAM configurations.
This board is very similar to the NanoPi NEO PLUS2
Signed-off-by: Jasper Scholte <NightNL@outlook.com>
Follow the strategy of other targets and create a
default environment file, uEnv.txt, to configure the
behavior of U-Boot.
For now, use it to pass bootargs to the kernel
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
Create a directory inside STAGING_DIR and copy U-Boot
output images, so they can be used later when creating the
sdcard image
Additionally, like others targets, override the default
install method to avoid copying the images to bin directory
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
Select the U-Boot variant automatically based on the
current selected device, and hide the package from
menuconfig
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
The board was added when creating the target, but the
corresponding device was never defined inside the target
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
- Specifications -
CuBox i1:
- SoC: i.MX6 Solo
- Cores: 1
- Memory Size: 512MB
- GPU: GC880
- Wifi/Bluetooth: Optional
- USB 2.0 ports: 2
- Ethernet: 10/100/1000 Mbps
CuBox i2 | i2eX:
- SoC: i.MX6 Dual Lite
- Cores: 2
- Memory Size: 1GB
- GPU: GC2000
- Wifi/Bluetooth: Optional
- USB 2.0 ports: 2
- Ethernet: 10/100/1000 Mbps
CuBox i4Pro | i4x4:
- SoC: i.MX6 Quad
- Cores: 4
- Memory Size: 2/4 GB
- GPU: GC2000
- Wifi/Bluetooth: Build In
- USB 2.0 ports: 2
- Ethernet: 10/100/1000 Mbps
Built-in u-boot requires SPL (secondary program loader) to be present on the SD-card regardless of the image type which will be loaded.
SPL is generated by the u-boot-mx6cuboxi package which is preselected by the target device and can be found in bin/u-boot-mx6cuboxi directory.
Flashing the SPL:
dd if=/dev/zero of=/dev/mmcblk0 bs=1M count=4
dd if=bin/targets/imx6/generic/u-boot-mx6cuboxi/SPL of=/dev/mmcblk0 bs=1K seek=1
Preparing the firmware on the SD-card:
(echo o; echo n; echo p; echo 1; echo ''; echo ''; echo w) | fdisk /dev/mmcblk0
mkfs.ext4 /dev/mmcblk0p1
mount /dev/mmcblk0p1 /mnt
tar -xzf bin/targets/imx6/generic/openwrt-imx6-device-cubox-i-rootfs.tar.gz -C /mnt/
mkdir -p /mnt/boot
cp bin/targets/imx6/generic/{*-uImage,*.dtb,*.scr} /mnt/boot/
Generated u-boot.img needs to be placed on the first partition:
cp bin/targets/imx6/generic/u-boot-mx6cuboxi/u-boot.img /mnt/
To boot from the SD card:
Boot script which sets mmc/dtb parameters and boots the board is automatically sourced.
If this does not work for any reason:
mmc dev 0; load mmc 0:1 $scriptaddr boot/boot.scr; source $scriptaddr
Currently imx6dl-cubox-i.dtb (Dual Lite) and imx6q-cubox-i.dtb (Quad) device trees are available.
Tested on i4Pro, MMC, USB (+ HiD), HDMI and ethernet ports are working.
Wireless and bluetooth are broken ATM. According to SolidRun forums, BCM4329/BCM4330 firmware is used which works fine on older kernels.
Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
Backport board support from the upcoming v2018.09 release,
and add an additional patch to read the MAC address
from flash memory
Signed-off-by: Luis Araneda <luaraneda@gmail.com>
Patch 300-CVE-2015-8370.patch was added without proper rebasing on the
version used by OpenWrt, make it apply and refresh the patch to fix
compilation.
Fixes: 7e73e9128f ("grub2: Fix CVE-2015-8370")
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This CVE is a culmination of multiple integer overflow issues that cause
multiple issues like Denial of Service and authentication bypass.
More info: https://nvd.nist.gov/vuln/detail/CVE-2015-8370
Taken from Fedora.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
This commit adds support for the OCEDO Koala
SOC: Qualcomm QCA9558 (Scorpion)
RAM: 128MB
FLASH: 16MiB
WLAN1: QCA9558 2.4 GHz 802.11bgn 3x3
WLAN2: QCA9880 5 GHz 802.11nac 3x3
INPUT: RESET button
LED: Power, LAN, WiFi 2.4, WiFi 5, SYS
Serial: Header Next to Black metal shield
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi
- 5 GHz WiFi
- TFTP boot from ramdisk image
- Installation via ramdisk image
- OpenWRT sysupgrade
- Buttons
- LEDs
Installation seems to be possible only through booting an OpenWRT
ramdisk image.
Hold down the reset button while powering on the device. It will load a
ramdisk image named 'koala-uImage-initramfs-lzma.bin' from 192.168.100.8.
Note: depending on the present software, the device might also try to
pull a file called 'koala-uimage-factory'. Only the name differs, it
is still used as a ramdisk image.
Wait for the ramdisk image to boot. OpenWRT can be written to the flash
via sysupgrade or mtd.
Due to the flip-flop bootloader which we not (yet) support, you need to
set the partition the bootloader is selecting. It is possible from the
initramfs image with
> fw_setenv bootcmd run bootcmd_1
Afterwards you can reboot the device.
Signed-off-by: David Bauer <mail@david-bauer.net>
CPU: H5 High Performance Quad-core 64-bit Cortex-A53
GPU: Mali450 OpenGL ES 2.0/1.1/1.0, OpenVG 1.1, EGL
Memory: 1GB DDR3 (shared with GPU)
Onboard Storage: TF card (Max. 32GB) / NOR flash(2MB)
Onboard Network: 1000M/100M Ethernet RJ45
USB 2.0 Ports: Three USB 2.0 HOST, one USB 2.0 OTG, HOST mode
role by default in DTS
Buttons: Power Button(SW4) Debug TTL
UART: ..DC-IN..
>[GND][RX][TX] ..HDMI..
Signed-off-by: Antonio Silverio <menion@gmail.com>
This adds uci entries for all ath79 devices for which this already was
the case on ar71xx. Additionally we add the OCEDO Koala as there was no
support in OpenWRT yet.
Signed-off-by: David Bauer <mail@david-bauer.net>
* change mx6qsabresd to mx6qsabres to match defconfig name
* merge wanboard profiles since there is only one defconfig for the target device
* move wanboard options from wandboard.h to defconfig
* remove legacy patches
Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
With current uboot default configuration the bootloader will
fail to start the OpenWrt firmware with the following error:
-----
unexpected character 'b' at the end of partition
Error initializing mtdparts!
incorrect device type in ubi
Partition ubi not found!
Error, no UBI device/partition selected!
Wrong Image Format for bootm command
Error occured, error code = 112
-----
If the uboot configuration is examined with printenv
I can see that mdtparts line (on a nsa310) is wrong:
-----
mtdparts=mtdparts=orion_nand:0x0c0000(uboot),
0x80000(uboot_env),0x7ec0000(ubi)bootargs_root=
----
The "bootargs_root=" that was appended to it should not be there.
Fix the issue by adding a \0 line terminator at the end of affected lines,
mimicking what is also done by uboot upstream.
This issue was detected and confirmed on a nsa310, nsa325 and
a pogoplug v4, but it's not hardware-specific, so apply the same fix
to other devices as well.
Note that the issue is with the uboot's integrated boot configuration,
which is not used unless the uboot configuration in flash is unavailable
(erased or corrupted), which happens only on first time installation,
or if the user deletes the uboot configuration when upgrading uboot.
People just upgrading from an older uboot without erasing their previous
uboot configuration stored in flash would not have noticed this issue.
Signed-off-by: Alberto Bursi <alberto.bursi@outlook.it>
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
The device tree files are now matching the kernel 4.17 and this will be
send also for integration into mainline U-Boot.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This patch 220-add-sunxi50i-nanopi-neo-plus2.patch was merged upstream.
The u-boot-sunxi-with-spl.bin is now also created for the ARM64 sunxi
boards by U-Boot itself, no need to do it manually any more.
This was tested on a H2+ Orange Pi R1 and a H5 Orange Pi Zero Plus.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds support for the OCEDO Koala
SOC: Qualcomm QCA9558 (Scorpion)
RAM: 128MB
FLASH: 16MiB
WLAN1: QCA9558 2.4 GHz 802.11bgn 3x3
WLAN2: QCA9880 5 GHz 802.11nac 3x3
INPUT: RESET button
LED: Power, LAN, WiFi 2.4, WiFi 5, SYS
Serial: Header Next to Black metal shield
Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi
- 5 GHz WiFi
- TFTP boot from ramdisk image
- Installation via ramdisk image
- OpenWRT sysupgrade
- Buttons
- LEDs
Installation seems to be possible only through booting an OpenWRT
ramdisk image.
Hold down the reset button while powering on the device. It will load a
ramdisk image named 'koala-uImage-initramfs-lzma.bin' from 192.168.100.8.
Note: depending on the present software, the device might also try to
pull a file called 'koala-uimage-factory'. Only the name differs, it
is still used as a ramdisk image.
Wait for the ramdisk image to boot. OpenWRT can be written to the flash
via sysupgrade or mtd.
Due to the flip-flop bootloader which we not (yet) support, you need to
set the partition the bootloader is selecting. It is possible from the
initramfs image with
> fw_setenv bootcmd run bootcmd_1
Afterwards you can reboot the device.
Signed-off-by: David Bauer <mail@david-bauer.net>