cleanup USB driver, it's still experimental

SVN-Revision: 9480
This commit is contained in:
Gabor Juhos 2007-11-01 19:25:05 +00:00
parent c8d8f93977
commit c88cda562a
5 changed files with 608 additions and 771 deletions

View file

@ -11,55 +11,108 @@
#ifdef DEBUG #ifdef DEBUG
#define edstring(ed_type) ({ char *temp; \ static inline char *ed_typestring(int ed_type)
switch (ed_type) { \ {
case PIPE_CONTROL: temp = "ctrl"; break; \ switch (ed_type) {
case PIPE_BULK: temp = "bulk"; break; \ case PIPE_CONTROL:
case PIPE_INTERRUPT: temp = "intr"; break; \ return "ctrl";
default: temp = "isoc"; break; \ case PIPE_BULK:
}; temp;}) return "bulk";
#define pipestring(pipe) edstring(usb_pipetype(pipe)) case PIPE_INTERRUPT:
return "intr";
case PIPE_ISOCHRONOUS:
return "isoc";
}
return "(bad ed_type)";
}
static inline char *ed_statestring(int state)
{
switch (state) {
case ED_IDLE:
return "IDLE";
case ED_UNLINK:
return "UNLINK";
case ED_OPER:
return "OPER";
case ED_NEW:
return "NEW";
}
return "?STATE";
}
static inline char *pipestring(int pipe)
{
return ed_typestring(usb_pipetype(pipe));
}
static inline char *td_pidstring(u32 info)
{
switch (info & TD_DP) {
case TD_DP_SETUP:
return "SETUP";
case TD_DP_IN:
return "IN";
case TD_DP_OUT:
return "OUT";
}
return "?PID";
}
static inline char *td_togglestring(u32 info)
{
switch (info & TD_T) {
case TD_T_DATA0:
return "DATA0";
case TD_T_DATA1:
return "DATA1";
case TD_T_CARRY:
return "CARRY";
}
return "?TOGGLE";
}
/* debug| print the main components of an URB /* debug| print the main components of an URB
* small: 0) header + data packets 1) just header * small: 0) header + data packets 1) just header
*/ */
static void __attribute__((unused)) static void __attribute__((unused))
urb_print(struct urb * urb, char * str, int small) urb_print(struct admhcd *ahcd, struct urb * urb, char * str, int small)
{ {
unsigned int pipe= urb->pipe; unsigned int pipe = urb->pipe;
if (!urb->dev || !urb->dev->bus) { if (!urb->dev || !urb->dev->bus) {
dbg("%s URB: no dev", str); admhc_dbg(ahcd, "%s URB: no dev", str);
return; return;
} }
#ifndef ADMHC_VERBOSE_DEBUG #ifndef ADMHC_VERBOSE_DEBUG
if (urb->status != 0) if (urb->status != 0)
#endif #endif
dbg("%s %p dev=%d ep=%d%s-%s flags=%x len=%d/%d stat=%d", admhc_dbg(ahcd, "URB-%s %p dev=%d ep=%d%s-%s flags=%x len=%d/%d "
str, "stat=%d\n",
urb, str,
usb_pipedevice (pipe), urb,
usb_pipeendpoint (pipe), usb_pipedevice(pipe),
usb_pipeout(pipe)? "out" : "in", usb_pipeendpoint(pipe),
pipestring(pipe), usb_pipeout(pipe)? "out" : "in",
urb->transfer_flags, pipestring(pipe),
urb->actual_length, urb->transfer_flags,
urb->transfer_buffer_length, urb->actual_length,
urb->status); urb->transfer_buffer_length,
urb->status);
#ifdef ADMHC_VERBOSE_DEBUG #ifdef ADMHC_VERBOSE_DEBUG
if (!small) { if (!small) {
int i, len; int i, len;
if (usb_pipecontrol(pipe)) { if (usb_pipecontrol(pipe)) {
printk(KERN_DEBUG __FILE__ ": setup(8):"); admhc_dbg(admhc, "setup(8): ");
for (i = 0; i < 8 ; i++) for (i = 0; i < 8 ; i++)
printk (" %02x", ((__u8 *) urb->setup_packet) [i]); printk (" %02x", ((__u8 *) urb->setup_packet) [i]);
printk ("\n"); printk ("\n");
} }
if (urb->transfer_buffer_length > 0 && urb->transfer_buffer) { if (urb->transfer_buffer_length > 0 && urb->transfer_buffer) {
printk(KERN_DEBUG __FILE__ ": data(%d/%d):", admhc_dbg(admhc, "data(%d/%d): ",
urb->actual_length, urb->actual_length,
urb->transfer_buffer_length); urb->transfer_buffer_length);
len = usb_pipeout(pipe)? len = usb_pipeout(pipe)?
@ -83,12 +136,8 @@ urb_print(struct urb * urb, char * str, int small)
} while (0); } while (0);
static void admhc_dump_intr_mask ( static void admhc_dump_intr_mask(struct admhcd *ahcd, char *label, u32 mask,
struct admhcd *ahcd, char **next, unsigned *size)
char *label,
u32 mask,
char **next,
unsigned *size)
{ {
admhc_dbg_sw(ahcd, next, size, "%s 0x%08x%s%s%s%s%s%s%s%s%s%s\n", admhc_dbg_sw(ahcd, next, size, "%s 0x%08x%s%s%s%s%s%s%s%s%s%s\n",
label, label,
@ -106,12 +155,8 @@ static void admhc_dump_intr_mask (
); );
} }
static void maybe_print_eds ( static void maybe_print_eds(struct admhcd *ahcd, char *label, u32 value,
struct admhcd *ahcd, char **next, unsigned *size)
char *label,
u32 value,
char **next,
unsigned *size)
{ {
if (value) if (value)
admhc_dbg_sw(ahcd, next, size, "%s %08x\n", label, value); admhc_dbg_sw(ahcd, next, size, "%s %08x\n", label, value);
@ -129,7 +174,7 @@ static char *buss2string (int state)
case ADMHC_BUSS_SUSPEND: case ADMHC_BUSS_SUSPEND:
return "suspend"; return "suspend";
} }
return "(bad state)"; return "?state";
} }
static void static void
@ -152,7 +197,7 @@ admhc_dump_status(struct admhcd *ahcd, char **next, unsigned *size)
admhc_dbg_sw(ahcd, next, size, admhc_dbg_sw(ahcd, next, size,
"host_control 0x%08x BUSS=%s%s\n", "host_control 0x%08x BUSS=%s%s\n",
temp, temp,
buss2string (temp & ADMHC_HC_BUSS), buss2string(temp & ADMHC_HC_BUSS),
(temp & ADMHC_HC_DMAE) ? " DMAE" : "" (temp & ADMHC_HC_DMAE) ? " DMAE" : ""
); );
@ -245,59 +290,42 @@ static const char data1[] = "DATA1";
static void admhc_dump_td(const struct admhcd *ahcd, const char *label, static void admhc_dump_td(const struct admhcd *ahcd, const char *label,
const struct td *td) const struct td *td)
{ {
u32 tmp = hc32_to_cpup(ahcd, &td->hwINFO); u32 tmp;
admhc_dbg(ahcd, "%s td %p; urb %p index %d; hwNextTD %08x\n", admhc_dbg(ahcd, "%s td %p; urb %p index %d; hwNextTD %08x\n",
label, td, label, td,
td->urb, td->index, td->urb, td->index,
hc32_to_cpup(ahcd, &td->hwNextTD)); hc32_to_cpup(ahcd, &td->hwNextTD));
if ((td->flags & TD_FLAG_ISO) == 0) { tmp = hc32_to_cpup(ahcd, &td->hwINFO);
const char *toggle, *pid; admhc_dbg(ahcd, " status %08x%s CC=%x EC=%d %s %s ISI=%x FN=%x\n",
tmp,
switch (tmp & TD_T) { (tmp & TD_OWN) ? " OWN" : "",
case TD_T_DATA0: toggle = data0; break; TD_CC_GET(tmp),
case TD_T_DATA1: toggle = data1; break; TD_EC_GET(tmp),
case TD_T_CARRY: toggle = "CARRY"; break; td_togglestring(tmp),
default: toggle = "(bad toggle)"; break; td_pidstring(tmp),
} TD_ISI_GET(tmp),
switch (tmp & TD_DP) { TD_FN_GET(tmp));
case TD_DP_SETUP: pid = "SETUP"; break;
case TD_DP_IN: pid = "IN"; break;
case TD_DP_OUT: pid = "OUT"; break;
default: pid = "(bad pid)"; break;
}
admhc_dbg(ahcd,
" status %08x%s CC=%x EC=%d %s %s ISI=%x FN=%x\n",
tmp,
(tmp & TD_OWN) ? " OWN" : "",
TD_CC_GET(tmp),
TD_EC_GET(tmp),
toggle,
pid,
TD_ISI_GET(tmp),
TD_FN_GET(tmp));
} else {
#if 0 /* TODO: remove */
unsigned i;
admhc_dbg(ahcd, " info %08x CC=%x FC=%d DI=%d SF=%04x\n", tmp,
TD_CC_GET(tmp),
(tmp >> 24) & 0x07,
(tmp & TD_DI) >> 21,
tmp & 0x0000ffff);
admhc_dbg(ahcd, " bp0 %08x be %08x\n",
hc32_to_cpup (ahcd, &td->hwCBP) & ~0x0fff,
hc32_to_cpup (ahcd, &td->hwBE));
#endif
}
tmp = hc32_to_cpup(ahcd, &td->hwCBL); tmp = hc32_to_cpup(ahcd, &td->hwCBL);
admhc_dbg(ahcd, " dbp %08x; cbl %08x; LEN=%d%s\n", admhc_dbg(ahcd, " dbp %08x; cbl %08x; LEN=%d%s\n",
hc32_to_cpup (ahcd, &td->hwDBP), hc32_to_cpup(ahcd, &td->hwDBP),
tmp, tmp,
TD_BL_GET(tmp), TD_BL_GET(tmp),
(tmp & TD_IE) ? " IE" : "" (tmp & TD_IE) ? " IE" : "");
); }
static void admhc_dump_up(const struct admhcd *ahcd, const char *label,
const struct urb_priv *up)
{
int i;
admhc_dbg(ahcd, "%s urb/%p:\n", label, up->urb);
for (i = 0; i < up->td_cnt; i++) {
struct td *td = up->td[i];
admhc_dump_td(ahcd, " ->", td);
}
} }
/* caller MUST own hcd spinlock if verbose is set! */ /* caller MUST own hcd spinlock if verbose is set! */
@ -307,10 +335,10 @@ admhc_dump_ed(const struct admhcd *ahcd, const char *label,
{ {
u32 tmp = hc32_to_cpu(ahcd, ed->hwINFO); u32 tmp = hc32_to_cpu(ahcd, ed->hwINFO);
admhc_dbg(ahcd, "%s ed %p state 0x%x type %s; next ed %08x\n", admhc_dbg(ahcd, "%s ed %p %s type %s; next ed %08x\n",
label, label,
ed, ed->state, edstring (ed->type), ed, ed_statestring(ed->state), ed_typestring(ed->type),
hc32_to_cpup (ahcd, &ed->hwNextED)); hc32_to_cpup(ahcd, &ed->hwNextED));
admhc_dbg(ahcd, " info %08x MAX=%d%s%s%s%s EP=%d DEV=%d\n", tmp, admhc_dbg(ahcd, " info %08x MAX=%d%s%s%s%s EP=%d DEV=%d\n", tmp,
ED_MPS_GET(tmp), ED_MPS_GET(tmp),
@ -322,23 +350,22 @@ admhc_dump_ed(const struct admhcd *ahcd, const char *label,
ED_FA_GET(tmp)); ED_FA_GET(tmp));
tmp = hc32_to_cpup(ahcd, &ed->hwHeadP); tmp = hc32_to_cpup(ahcd, &ed->hwHeadP);
admhc_dbg(ahcd, " tds: head %08x tail %08x %s%s%s\n", admhc_dbg(ahcd, " tds: head %08x tail %08x %s%s\n",
tmp & TD_MASK, tmp & TD_MASK,
hc32_to_cpup (ahcd, &ed->hwTailP), hc32_to_cpup(ahcd, &ed->hwTailP),
(tmp & ED_C) ? data1 : data0, (tmp & ED_C) ? data1 : data0,
(tmp & ED_H) ? " HALT" : "", (tmp & ED_H) ? " HALT" : "");
verbose ? " td list follows" : " (not listing)");
if (verbose) { if (ed->urb_active)
struct list_head *tmp; admhc_dump_up(ahcd, " active ", ed->urb_active);
/* use ed->td_list because HC concurrently modifies if ((verbose) && (!list_empty(&ed->urb_pending))) {
* hwNextTD as it accumulates ed_donelist. struct list_head *entry;
*/ /* dump pending URBs */
list_for_each(tmp, &ed->td_list) { list_for_each(entry, &ed->urb_pending) {
struct td *td; struct urb_priv *up;
td = list_entry(tmp, struct td, td_list); up = list_entry(entry, struct urb_priv, pending);
admhc_dump_td (ahcd, " ->", td); admhc_dump_up(ahcd, " pending ", up);
} }
} }
} }
@ -346,6 +373,8 @@ admhc_dump_ed(const struct admhcd *ahcd, const char *label,
#else /* ifdef DEBUG */ #else /* ifdef DEBUG */
static inline void urb_print(struct urb * urb, char * str, int small) {} static inline void urb_print(struct urb * urb, char * str, int small) {}
static inline void admhc_dump_up(const struct admhcd *ahcd, const char *label,
const struct urb_priv *up) {}
static inline void admhc_dump_ed(const struct admhcd *ahcd, const char *label, static inline void admhc_dump_ed(const struct admhcd *ahcd, const char *label,
const struct ed *ed, int verbose) {} const struct ed *ed, int verbose) {}
static inline void admhc_dump(struct admhcd *ahcd, int verbose) {} static inline void admhc_dump(struct admhcd *ahcd, int verbose) {}
@ -363,6 +392,44 @@ static inline void remove_debug_files(struct admhcd *bus) { }
#else #else
static ssize_t
show_urb_priv(struct admhcd *ahcd, char *buf, size_t count,
struct urb_priv *up)
{
unsigned temp, size = count;
int i;
if (!up)
return 0;
temp = scnprintf(buf, size,"\n\turb %p ", up->urb);
size -= temp;
buf += temp;
for (i = 0; i< up->td_cnt; i++) {
struct td *td;
u32 dbp, cbl, info;
td = up->td[i];
info = hc32_to_cpup(ahcd, &td->hwINFO);
dbp = hc32_to_cpup(ahcd, &td->hwDBP);
cbl = hc32_to_cpup(ahcd, &td->hwCBL);
temp = scnprintf(buf, size,
"\n\t\ttd %p %s %d %s%scc=%x (%08x,%08x)",
td,
td_pidstring(info),
TD_BL_GET(cbl),
(info & TD_OWN) ? "WORK " : "DONE ",
(cbl & TD_IE) ? "IE " : "",
TD_CC_GET(info), info, cbl);
size -= temp;
buf += temp;
}
return count - size;
}
static ssize_t static ssize_t
show_list(struct admhcd *ahcd, char *buf, size_t count, struct ed *ed) show_list(struct admhcd *ahcd, char *buf, size_t count, struct ed *ed)
{ {
@ -371,23 +438,15 @@ show_list(struct admhcd *ahcd, char *buf, size_t count, struct ed *ed)
if (!ed) if (!ed)
return 0; return 0;
#if 0
/* print first --> last */
while (ed->ed_prev)
ed = ed->ed_prev;
#endif
/* dump a snapshot of the bulk or control schedule */ /* dump a snapshot of the bulk or control schedule */
while (ed) { while (ed) {
u32 info = hc32_to_cpu(ahcd, ed->hwINFO); u32 info = hc32_to_cpu(ahcd, ed->hwINFO);
u32 headp = hc32_to_cpu(ahcd, ed->hwHeadP); u32 headp = hc32_to_cpu(ahcd, ed->hwHeadP);
struct list_head *entry;
struct td *td;
temp = scnprintf(buf, size, temp = scnprintf(buf, size,
"ed/%p %s %cs dev%d ep%d %s%smax %d %08x%s%s %s", "ed/%p %s %cs dev%d ep%d %s%smax %d %08x%s%s %s",
ed, ed,
edstring (ed->type), ed_typestring (ed->type),
(info & ED_SPEED_FULL) ? 'f' : 'l', (info & ED_SPEED_FULL) ? 'f' : 'l',
info & ED_FA_MASK, info & ED_FA_MASK,
(info >> ED_EN_SHIFT) & ED_EN_MASK, (info >> ED_EN_SHIFT) & ED_EN_MASK,
@ -397,34 +456,36 @@ show_list(struct admhcd *ahcd, char *buf, size_t count, struct ed *ed)
info, info,
(info & ED_SKIP) ? " S" : "", (info & ED_SKIP) ? " S" : "",
(headp & ED_H) ? " H" : "", (headp & ED_H) ? " H" : "",
(headp & ED_C) ? data1 : data0); (headp & ED_C) ? "DATA1" : "DATA0");
size -= temp; size -= temp;
buf += temp; buf += temp;
list_for_each(entry, &ed->td_list) { if (ed->urb_active) {
u32 dbp, cbl; temp = scnprintf(buf, size, "\nactive urb:");
td = list_entry(entry, struct td, td_list);
info = hc32_to_cpup (ahcd, &td->hwINFO);
dbp = hc32_to_cpup (ahcd, &td->hwDBP);
cbl = hc32_to_cpup (ahcd, &td->hwCBL);
temp = scnprintf(buf, size,
"\n\ttd %p %s %d %s%scc=%x urb %p (%08x,%08x)",
td,
({ char *pid;
switch (info & TD_DP) {
case TD_DP_SETUP: pid = "setup"; break;
case TD_DP_IN: pid = "in"; break;
case TD_DP_OUT: pid = "out"; break;
default: pid = "(bad pid)"; break;
} pid;}),
TD_BL_GET(cbl),
(info & TD_OWN) ? "" : "DONE ",
(cbl & TD_IE) ? "IE " : "",
TD_CC_GET (info), td->urb, info, cbl);
size -= temp; size -= temp;
buf += temp; buf += temp;
temp = show_urb_priv(ahcd, buf, size, ed->urb_active);
size -= temp;
buf += temp;
}
if (!list_empty(&ed->urb_pending)) {
struct list_head *entry;
temp = scnprintf(buf, size, "\npending urbs:");
size -= temp;
buf += temp;
list_for_each(entry, &ed->urb_pending) {
struct urb_priv *up;
up = list_entry(entry, struct urb_priv,
pending);
temp = show_urb_priv(ahcd, buf, size, up);
size -= temp;
buf += temp;
}
} }
temp = scnprintf(buf, size, "\n"); temp = scnprintf(buf, size, "\n");
@ -433,6 +494,7 @@ show_list(struct admhcd *ahcd, char *buf, size_t count, struct ed *ed)
ed = ed->ed_next; ed = ed->ed_next;
} }
return count - size; return count - size;
} }
@ -451,17 +513,7 @@ show_async(struct class_device *class_dev, char *buf)
/* display control and bulk lists together, for simplicity */ /* display control and bulk lists together, for simplicity */
spin_lock_irqsave(&ahcd->lock, flags); spin_lock_irqsave(&ahcd->lock, flags);
#if 0
temp = show_list (ahcd, buf, PAGE_SIZE, ahcd->ed_tails[ED_TAIL_CONTROL]);
temp += show_list (ahcd, buf + temp, PAGE_SIZE - temp,
ahcd->ed_tails[ED_TAIL_BULK]);
#else
#ifdef ED_TAIL_ARRAY
temp = show_list(ahcd, buf, PAGE_SIZE, ahcd->ed_head); temp = show_list(ahcd, buf, PAGE_SIZE, ahcd->ed_head);
#else
temp = show_list(ahcd, buf, PAGE_SIZE, ahcd->ed_head);
#endif
#endif
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
return temp; return temp;
@ -474,6 +526,7 @@ static CLASS_DEVICE_ATTR(async, S_IRUGO, show_async, NULL);
static ssize_t static ssize_t
show_periodic(struct class_device *class_dev, char *buf) show_periodic(struct class_device *class_dev, char *buf)
{ {
#if 0
struct usb_bus *bus; struct usb_bus *bus;
struct usb_hcd *hcd; struct usb_hcd *hcd;
struct admhcd *ahcd; struct admhcd *ahcd;
@ -564,6 +617,9 @@ show_periodic(struct class_device *class_dev, char *buf)
kfree (seen); kfree (seen);
return PAGE_SIZE - size; return PAGE_SIZE - size;
#else
return 0;
#endif
} }
static CLASS_DEVICE_ATTR(periodic, S_IRUGO, show_periodic, NULL); static CLASS_DEVICE_ATTR(periodic, S_IRUGO, show_periodic, NULL);

View file

@ -45,7 +45,7 @@
#include "../core/hcd.h" #include "../core/hcd.h"
#include "../core/hub.h" #include "../core/hub.h"
#define DRIVER_VERSION "v0.01" #define DRIVER_VERSION "v0.02"
#define DRIVER_AUTHOR "Gabor Juhos <juhosg at openwrt.org>" #define DRIVER_AUTHOR "Gabor Juhos <juhosg at openwrt.org>"
#define DRIVER_DESC "ADMtek USB 1.1 Host Controller Driver" #define DRIVER_DESC "ADMtek USB 1.1 Host Controller Driver"
@ -90,12 +90,14 @@ static int admhc_urb_enqueue(struct usb_hcd *hcd, struct usb_host_endpoint *ep,
struct ed *ed; struct ed *ed;
struct urb_priv *urb_priv; struct urb_priv *urb_priv;
unsigned int pipe = urb->pipe; unsigned int pipe = urb->pipe;
int i, td_cnt = 0; int td_cnt = 0;
unsigned long flags; unsigned long flags;
int retval = 0; int retval = 0;
#ifdef ADMHC_VERBOSE_DEBUG #ifdef ADMHC_VERBOSE_DEBUG
urb_print(urb, "ENQ", usb_pipein(pipe)); spin_lock_irqsave(&ahcd->lock, flags);
urb_print(ahcd, urb, "ENQEUE", usb_pipein(pipe));
spin_unlock_irqrestore(&ahcd->lock, flags);
#endif #endif
/* every endpoint has an ed, locate and maybe (re)initialize it */ /* every endpoint has an ed, locate and maybe (re)initialize it */
@ -112,10 +114,12 @@ static int admhc_urb_enqueue(struct usb_hcd *hcd, struct usb_host_endpoint *ep,
/* 1 TD for setup, 1 for ACK, plus ... */ /* 1 TD for setup, 1 for ACK, plus ... */
td_cnt = 2; td_cnt = 2;
/* FALLTHROUGH */ if (urb->transfer_buffer_length)
td_cnt++;
break;
case PIPE_BULK: case PIPE_BULK:
/* one TD for every 4096 Bytes (can be upto 8K) */ /* one TD for every 4096 Bytes (can be upto 8K) */
td_cnt += urb->transfer_buffer_length / TD_DATALEN_MAX; td_cnt = urb->transfer_buffer_length / TD_DATALEN_MAX;
/* ... and for any remaining bytes ... */ /* ... and for any remaining bytes ... */
if ((urb->transfer_buffer_length % TD_DATALEN_MAX) != 0) if ((urb->transfer_buffer_length % TD_DATALEN_MAX) != 0)
td_cnt++; td_cnt++;
@ -151,6 +155,7 @@ static int admhc_urb_enqueue(struct usb_hcd *hcd, struct usb_host_endpoint *ep,
return -ENOMEM; return -ENOMEM;
urb_priv->ed = ed; urb_priv->ed = ed;
urb_priv->urb = urb;
spin_lock_irqsave(&ahcd->lock, flags); spin_lock_irqsave(&ahcd->lock, flags);
/* don't submit to a dead HC */ /* don't submit to a dead HC */
@ -173,14 +178,8 @@ static int admhc_urb_enqueue(struct usb_hcd *hcd, struct usb_host_endpoint *ep,
goto fail; goto fail;
} }
/* schedule the ed if needed */ if (ed->type == PIPE_ISOCHRONOUS) {
if (ed->state == ED_IDLE) { if (ed->state == ED_NEW) {
#ifndef LATE_ED_SCHEDULE
retval = ed_schedule(ahcd, ed);
if (retval < 0)
goto fail0;
#endif
if (ed->type == PIPE_ISOCHRONOUS) {
u16 frame = admhc_frame_no(ahcd); u16 frame = admhc_frame_no(ahcd);
/* delay a few frames before the first TD */ /* delay a few frames before the first TD */
@ -192,29 +191,26 @@ static int admhc_urb_enqueue(struct usb_hcd *hcd, struct usb_host_endpoint *ep,
/* yes, only URB_ISO_ASAP is supported, and /* yes, only URB_ISO_ASAP is supported, and
* urb->start_frame is never used as input. * urb->start_frame is never used as input.
*/ */
} } else
} else if (ed->type == PIPE_ISOCHRONOUS) urb->start_frame = ed->last_iso + ed->interval;
urb->start_frame = ed->last_iso + ed->interval; }
/* fill the TDs and link them to the ed; and
* enable that part of the schedule, if needed
* and update count of queued periodic urbs
*/
urb->hcpriv = urb_priv; urb->hcpriv = urb_priv;
td_submit_urb(ahcd, urb); td_submit_urb(ahcd, urb_priv->urb);
#ifdef LATE_ED_SCHEDULE /* append it to the ED's queue */
if (ed->state == ED_IDLE) list_add_tail(&urb_priv->pending, &ed->urb_pending);
retval = ed_schedule(ahcd, ed);
#endif
admhc_dump_ed(ahcd, "admhc_urb_enqueue", urb_priv->ed, 1); /* schedule the ED */
retval = ed_schedule(ahcd, ed);
fail0: fail0:
spin_unlock(&urb->lock); spin_unlock(&urb->lock);
fail: fail:
if (retval) if (retval) {
urb_priv = urb->hcpriv;
urb_priv_free(ahcd, urb_priv); urb_priv_free(ahcd, urb_priv);
}
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
return retval; return retval;
@ -228,33 +224,44 @@ fail:
*/ */
static int admhc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb) static int admhc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
{ {
struct admhcd *ahcd = hcd_to_admhcd(hcd); struct admhcd *ahcd = hcd_to_admhcd(hcd);
unsigned long flags; struct urb_priv *up;
unsigned long flags;
#ifdef ADMHC_VERBOSE_DEBUG up = urb->hcpriv;
urb_print(urb, "DEQ", 1); if (!up)
#endif return 0;
spin_lock_irqsave(&ahcd->lock, flags); spin_lock_irqsave(&ahcd->lock, flags);
if (HC_IS_RUNNING(hcd->state)) {
struct urb_priv *urb_priv;
#ifdef ADMHC_VERBOSE_DEBUG
urb_print(ahcd, urb, "DEQEUE", 1);
#endif
if (HC_IS_RUNNING(hcd->state)) {
/* Unless an IRQ completed the unlink while it was being /* Unless an IRQ completed the unlink while it was being
* handed to us, flag it for unlink and giveback, and force * handed to us, flag it for unlink and giveback, and force
* some upcoming INTR_SF to call finish_unlinks() * some upcoming INTR_SF to call finish_unlinks()
*/ */
urb_priv = urb->hcpriv; if (up->ed->urb_active != up) {
if (urb_priv) { list_del(&up->pending);
if (urb_priv->ed->state == ED_OPER) finish_urb(ahcd, urb);
start_ed_unlink(ahcd, urb_priv->ed); } else {
ed_start_deschedule(ahcd, up->ed);
} }
} else { } else {
/* /*
* with HC dead, we won't respect hc queue pointers * with HC dead, we won't respect hc queue pointers
* any more ... just clean up every urb's memory. * any more ... just clean up every urb's memory.
*/ */
if (urb->hcpriv) if (up->ed->urb_active != up) {
list_del(&up->pending);
finish_urb(ahcd, urb); finish_urb(ahcd, urb);
} else {
finish_urb(ahcd, urb);
up->ed->urb_active = NULL;
up->ed->state = ED_IDLE;
}
} }
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
@ -266,9 +273,8 @@ static int admhc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
/* frees config/altsetting state for endpoints, /* frees config/altsetting state for endpoints,
* including ED memory, dummy TD, and bulk/intr data toggle * including ED memory, dummy TD, and bulk/intr data toggle
*/ */
static void admhc_endpoint_disable(struct usb_hcd *hcd,
static void struct usb_host_endpoint *ep)
admhc_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
{ {
struct admhcd *ahcd = hcd_to_admhcd(hcd); struct admhcd *ahcd = hcd_to_admhcd(hcd);
unsigned long flags; unsigned long flags;
@ -283,7 +289,7 @@ admhc_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
#ifdef ADMHC_VERBOSE_DEBUG #ifdef ADMHC_VERBOSE_DEBUG
spin_lock_irqsave(&ahcd->lock, flags); spin_lock_irqsave(&ahcd->lock, flags);
admhc_dump_ed(ahcd, "ep_disable", ed, 1); admhc_dump_ed(ahcd, "EP-DISABLE", ed, 1);
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
#endif #endif
@ -292,8 +298,8 @@ rescan:
if (!HC_IS_RUNNING(hcd->state)) { if (!HC_IS_RUNNING(hcd->state)) {
sanitize: sanitize:
ed->state = ED_IDLE; ed->state = ED_UNLINK;
finish_unlinks(ahcd, 0); admhc_finish_unlinks(ahcd, 0);
} }
switch (ed->state) { switch (ed->state) {
@ -306,10 +312,11 @@ sanitize:
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
schedule_timeout_uninterruptible(1); schedule_timeout_uninterruptible(1);
goto rescan; goto rescan;
case ED_IDLE: /* fully unlinked */ case ED_IDLE:
if (list_empty(&ed->td_list)) { case ED_NEW: /* fully unlinked */
td_free (ahcd, ed->dummy); if (list_empty(&ed->urb_pending)) {
ed_free (ahcd, ed); td_free(ahcd, ed->dummy);
ed_free(ahcd, ed);
break; break;
} }
/* else FALL THROUGH */ /* else FALL THROUGH */
@ -317,13 +324,16 @@ sanitize:
/* caller was supposed to have unlinked any requests; /* caller was supposed to have unlinked any requests;
* that's not our job. can't recover; must leak ed. * that's not our job. can't recover; must leak ed.
*/ */
admhc_err(ahcd, "leak ed %p (#%02x) state %d%s\n", admhc_err(ahcd, "leak ed %p (#%02x) %s act %p%s\n",
ed, ep->desc.bEndpointAddress, ed->state, ed, ep->desc.bEndpointAddress,
list_empty(&ed->td_list) ? "" : " (has tds)"); ed_statestring(ed->state),
td_free(ahcd, ed->dummy); ed->urb_active,
list_empty(&ed->urb_pending) ? "" : " (has urbs)");
break; break;
} }
ep->hcpriv = NULL; ep->hcpriv = NULL;
spin_unlock_irqrestore(&ahcd->lock, flags); spin_unlock_irqrestore(&ahcd->lock, flags);
return; return;
} }
@ -337,15 +347,8 @@ static int admhc_get_frame(struct usb_hcd *hcd)
static void admhc_usb_reset(struct admhcd *ahcd) static void admhc_usb_reset(struct admhcd *ahcd)
{ {
#if 0
ahcd->hc_control = admhc_readl(ahcd, &ahcd->regs->control);
ahcd->hc_control &= OHCI_CTRL_RWC;
admhc_writel(ahcd, ahcd->hc_control, &ahcd->regs->control);
#else
/* FIXME */
ahcd->host_control = ADMHC_BUSS_RESET; ahcd->host_control = ADMHC_BUSS_RESET;
admhc_writel(ahcd, ahcd->host_control ,&ahcd->regs->host_control); admhc_writel(ahcd, ahcd->host_control ,&ahcd->regs->host_control);
#endif
} }
/* admhc_shutdown forcibly disables IRQs and DMA, helping kexec and /* admhc_shutdown forcibly disables IRQs and DMA, helping kexec and
@ -510,17 +513,6 @@ static int admhc_run(struct admhcd *ahcd)
/* also: power/overcurrent flags in rhdesc */ /* also: power/overcurrent flags in rhdesc */
} }
#if 0 /* TODO: not applicable */
/* Reset USB nearly "by the book". RemoteWakeupConnected was
* saved if boot firmware (BIOS/SMM/...) told us it's connected,
* or if bus glue did the same (e.g. for PCI add-in cards with
* PCI PM support).
*/
if ((ahcd->hc_control & OHCI_CTRL_RWC) != 0
&& !device_may_wakeup(hcd->self.controller))
device_init_wakeup(hcd->self.controller, 1);
#endif
switch (ahcd->host_control & ADMHC_HC_BUSS) { switch (ahcd->host_control & ADMHC_HC_BUSS) {
case ADMHC_BUSS_OPER: case ADMHC_BUSS_OPER:
temp = 0; temp = 0;
@ -658,6 +650,7 @@ static irqreturn_t admhc_irq(struct usb_hcd *hcd)
ints &= admhc_readl(ahcd, &regs->int_enable); ints &= admhc_readl(ahcd, &regs->int_enable);
spin_lock(&ahcd->lock);
if (ints & ADMHC_INTR_FATI) { if (ints & ADMHC_INTR_FATI) {
/* e.g. due to PCI Master/Target Abort */ /* e.g. due to PCI Master/Target Abort */
admhc_disable(ahcd); admhc_disable(ahcd);
@ -666,6 +659,13 @@ static irqreturn_t admhc_irq(struct usb_hcd *hcd)
admhc_usb_reset(ahcd); admhc_usb_reset(ahcd);
} }
if (ints & ADMHC_INTR_BABI) {
admhc_intr_disable(ahcd, ADMHC_INTR_MIE);
admhc_err(ahcd, "Babble Detected\n");
admhc_disable(ahcd);
admhc_usb_reset(ahcd);
}
if (ints & ADMHC_INTR_INSM) { if (ints & ADMHC_INTR_INSM) {
admhc_vdbg(ahcd, "Root Hub Status Change\n"); admhc_vdbg(ahcd, "Root Hub Status Change\n");
ahcd->next_statechange = jiffies + STATECHANGE_DELAY; ahcd->next_statechange = jiffies + STATECHANGE_DELAY;
@ -690,21 +690,17 @@ static irqreturn_t admhc_irq(struct usb_hcd *hcd)
admhc_intr_ack(ahcd, ADMHC_INTR_RESI); admhc_intr_ack(ahcd, ADMHC_INTR_RESI);
hcd->poll_rh = 1; hcd->poll_rh = 1;
if (ahcd->autostop) { if (ahcd->autostop) {
spin_lock(&ahcd->lock);
admhc_rh_resume(ahcd); admhc_rh_resume(ahcd);
spin_unlock(&ahcd->lock);
} else } else
usb_hcd_resume_root_hub(hcd); usb_hcd_resume_root_hub(hcd);
} }
if (ints & ADMHC_INTR_TDC) { if (ints & ADMHC_INTR_TDC) {
admhc_vdbg(ahcd, "Transfer Descriptor Complete\n");
admhc_intr_ack(ahcd, ADMHC_INTR_TDC); admhc_intr_ack(ahcd, ADMHC_INTR_TDC);
if (HC_IS_RUNNING(hcd->state)) if (HC_IS_RUNNING(hcd->state))
admhc_intr_disable(ahcd, ADMHC_INTR_TDC); admhc_intr_disable(ahcd, ADMHC_INTR_TDC);
spin_lock(&ahcd->lock); admhc_vdbg(ahcd, "Transfer Descriptor Complete\n");
admhc_td_complete(ahcd); admhc_td_complete(ahcd);
spin_unlock(&ahcd->lock);
if (HC_IS_RUNNING(hcd->state)) if (HC_IS_RUNNING(hcd->state))
admhc_intr_enable(ahcd, ADMHC_INTR_TDC); admhc_intr_enable(ahcd, ADMHC_INTR_TDC);
} }
@ -714,49 +710,19 @@ static irqreturn_t admhc_irq(struct usb_hcd *hcd)
admhc_vdbg(ahcd, "Schedule Overrun\n"); admhc_vdbg(ahcd, "Schedule Overrun\n");
} }
if (ints & ADMHC_INTR_BABI) {
admhc_intr_disable(ahcd, ADMHC_INTR_BABI);
admhc_intr_ack(ahcd, ADMHC_INTR_BABI);
admhc_err(ahcd, "Babble Detected\n");
}
#if 1
spin_lock(&ahcd->lock);
if (ahcd->ed_rm_list)
finish_unlinks(ahcd, admhc_frame_no(ahcd));
if ((ints & ADMHC_INTR_SOFI) != 0 && !ahcd->ed_rm_list
&& HC_IS_RUNNING(hcd->state))
admhc_intr_disable(ahcd, ADMHC_INTR_SOFI);
spin_unlock(&ahcd->lock);
#else
if (ints & ADMHC_INTR_SOFI) { if (ints & ADMHC_INTR_SOFI) {
admhc_vdbg(ahcd, "Start Of Frame\n"); admhc_intr_ack(ahcd, ADMHC_INTR_SOFI);
spin_lock(&ahcd->lock);
/* handle any pending ED removes */ /* handle any pending ED removes */
finish_unlinks(ahcd, admhc_frameno(ahcd)); admhc_finish_unlinks(ahcd, admhc_frame_no(ahcd));
admhc_sof_refill(ahcd);
/* leaving INTR_SOFI enabled when there's still unlinking
* to be done in the (next frame).
*/
if ((ahcd->ed_rm_list == NULL) ||
HC_IS_RUNNING(hcd->state) == 0)
/*
* disable INTR_SOFI if there are no unlinking to be
* done (in the next frame)
*/
admhc_intr_disable(ahcd, ADMHC_INTR_SOFI);
spin_unlock(&ahcd->lock);
} }
#endif
if (HC_IS_RUNNING(hcd->state)) { if (HC_IS_RUNNING(hcd->state)) {
admhc_intr_ack(ahcd, ints); admhc_intr_ack(ahcd, ints);
admhc_intr_enable(ahcd, ADMHC_INTR_MIE); admhc_intr_enable(ahcd, ADMHC_INTR_MIE);
admhc_writel_flush(ahcd); admhc_writel_flush(ahcd);
} }
spin_unlock(&ahcd->lock);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
@ -804,7 +770,7 @@ static int admhc_restart(struct admhcd *ahcd)
usb_root_hub_lost_power(admhcd_to_hcd(ahcd)->self.root_hub); usb_root_hub_lost_power(admhcd_to_hcd(ahcd)->self.root_hub);
if (!list_empty(&ahcd->pending)) if (!list_empty(&ahcd->pending))
admhc_dbg(ahcd, "abort schedule...\n"); admhc_dbg(ahcd, "abort schedule...\n");
list_for_each_entry (priv, &ahcd->pending, pending) { list_for_each_entry(priv, &ahcd->pending, pending) {
struct urb *urb = priv->td[0]->urb; struct urb *urb = priv->td[0]->urb;
struct ed *ed = priv->ed; struct ed *ed = priv->ed;
@ -829,7 +795,7 @@ static int admhc_restart(struct admhcd *ahcd)
urb->status = -ESHUTDOWN; urb->status = -ESHUTDOWN;
spin_unlock(&urb->lock); spin_unlock(&urb->lock);
} }
finish_unlinks (ahcd, 0); finish_unlinks(ahcd, 0);
spin_unlock_irq(&ahcd->lock); spin_unlock_irq(&ahcd->lock);
/* paranoia, in case that didn't work: */ /* paranoia, in case that didn't work: */

View file

@ -27,7 +27,7 @@ static void admhc_hcd_init(struct admhcd *ahcd)
{ {
ahcd->next_statechange = jiffies; ahcd->next_statechange = jiffies;
spin_lock_init(&ahcd->lock); spin_lock_init(&ahcd->lock);
INIT_LIST_HEAD(&ahcd->pending); spin_lock_init(&ahcd->dma_lock);
} }
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
@ -76,19 +76,6 @@ static void admhc_mem_cleanup(struct admhcd *ahcd)
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
/* ahcd "done list" processing needs this mapping */
static inline struct td *dma_to_td(struct admhcd *ahcd, dma_addr_t td_dma)
{
struct td *td;
td_dma &= TD_MASK;
td = ahcd->td_hash[TD_HASH_FUNC(td_dma)];
while (td && td->td_dma != td_dma)
td = td->td_hash;
return td;
}
/* TDs ... */ /* TDs ... */
static struct td *td_alloc(struct admhcd *ahcd, gfp_t mem_flags) static struct td *td_alloc(struct admhcd *ahcd, gfp_t mem_flags)
{ {
@ -101,29 +88,13 @@ static struct td *td_alloc(struct admhcd *ahcd, gfp_t mem_flags)
/* in case ahcd fetches it, make it look dead */ /* in case ahcd fetches it, make it look dead */
memset(td, 0, sizeof *td); memset(td, 0, sizeof *td);
td->hwNextTD = cpu_to_hc32(ahcd, dma);
td->td_dma = dma; td->td_dma = dma;
/* hashed in td_fill */
return td; return td;
} }
static void td_free(struct admhcd *ahcd, struct td *td) static void td_free(struct admhcd *ahcd, struct td *td)
{ {
struct td **prev = &ahcd->td_hash[TD_HASH_FUNC(td->td_dma)];
while (*prev && *prev != td)
prev = &(*prev)->td_hash;
if (*prev)
*prev = td->td_hash;
#if 0
/* TODO: remove */
else if ((td->hwINFO & cpu_to_hc32(ahcd, TD_DONE)) != 0)
admhc_dbg (ahcd, "no hash for td %p\n", td);
#else
else if ((td->flags & TD_FLAG_DONE) != 0)
admhc_dbg (ahcd, "no hash for td %p\n", td);
#endif
dma_pool_free(ahcd->td_cache, td, td->td_dma); dma_pool_free(ahcd->td_cache, td, td->td_dma);
} }
@ -142,8 +113,7 @@ static struct ed *ed_alloc(struct admhcd *ahcd, gfp_t mem_flags)
memset(ed, 0, sizeof(*ed)); memset(ed, 0, sizeof(*ed));
ed->dma = dma; ed->dma = dma;
INIT_LIST_HEAD(&ed->td_list); INIT_LIST_HEAD(&ed->urb_pending);
INIT_LIST_HEAD(&ed->urb_list);
return ed; return ed;
} }
@ -164,7 +134,6 @@ static void urb_priv_free(struct admhcd *ahcd, struct urb_priv *urb_priv)
if (urb_priv->td[i]) if (urb_priv->td[i])
td_free(ahcd, urb_priv->td[i]); td_free(ahcd, urb_priv->td[i]);
list_del(&urb_priv->pending);
kfree(urb_priv); kfree(urb_priv);
} }
@ -172,6 +141,7 @@ static struct urb_priv *urb_priv_alloc(struct admhcd *ahcd, int num_tds,
gfp_t mem_flags) gfp_t mem_flags)
{ {
struct urb_priv *priv; struct urb_priv *priv;
int i;
/* allocate the private part of the URB */ /* allocate the private part of the URB */
priv = kzalloc(sizeof(*priv) + sizeof(struct td) * num_tds, mem_flags); priv = kzalloc(sizeof(*priv) + sizeof(struct td) * num_tds, mem_flags);
@ -179,13 +149,15 @@ static struct urb_priv *urb_priv_alloc(struct admhcd *ahcd, int num_tds,
goto err; goto err;
/* allocate the TDs (deferring hash chain updates) */ /* allocate the TDs (deferring hash chain updates) */
for (priv->td_cnt = 0; priv->td_cnt < num_tds; priv->td_cnt++) { for (i = 0; i < num_tds; i++) {
priv->td[priv->td_cnt] = td_alloc(ahcd, mem_flags); priv->td[i] = td_alloc(ahcd, mem_flags);
if (priv->td[priv->td_cnt] == NULL) if (priv->td[i] == NULL)
goto err_free; goto err_free;
priv->td[i]->index = i;
} }
INIT_LIST_HEAD(&priv->pending); INIT_LIST_HEAD(&priv->pending);
priv->td_cnt = num_tds;
return priv; return priv;

View file

@ -38,7 +38,7 @@ __acquires(ahcd->lock)
&& urb->status == 0) { && urb->status == 0) {
urb->status = -EREMOTEIO; urb->status = -EREMOTEIO;
#ifdef ADMHC_VERBOSE_DEBUG #ifdef ADMHC_VERBOSE_DEBUG
urb_print(urb, "SHORT", usb_pipeout (urb->pipe)); urb_print(ahcd, urb, "SHORT", usb_pipeout (urb->pipe));
#endif #endif
} }
spin_unlock(&urb->lock); spin_unlock(&urb->lock);
@ -53,7 +53,7 @@ __acquires(ahcd->lock)
} }
#ifdef ADMHC_VERBOSE_DEBUG #ifdef ADMHC_VERBOSE_DEBUG
urb_print(urb, "RET", usb_pipeout (urb->pipe)); urb_print(ahcd, urb, "FINISH", 0);
#endif #endif
/* urb->complete() can reenter this HCD */ /* urb->complete() can reenter this HCD */
@ -67,189 +67,6 @@ __acquires(ahcd->lock)
* ED handling functions * ED handling functions
*-------------------------------------------------------------------------*/ *-------------------------------------------------------------------------*/
#if 0 /* FIXME */
/* search for the right schedule branch to use for a periodic ed.
* does some load balancing; returns the branch, or negative errno.
*/
static int balance(struct admhcd *ahcd, int interval, int load)
{
int i, branch = -ENOSPC;
/* iso periods can be huge; iso tds specify frame numbers */
if (interval > NUM_INTS)
interval = NUM_INTS;
/* search for the least loaded schedule branch of that period
* that has enough bandwidth left unreserved.
*/
for (i = 0; i < interval ; i++) {
if (branch < 0 || ahcd->load [branch] > ahcd->load [i]) {
int j;
/* usb 1.1 says 90% of one frame */
for (j = i; j < NUM_INTS; j += interval) {
if ((ahcd->load [j] + load) > 900)
break;
}
if (j < NUM_INTS)
continue;
branch = i;
}
}
return branch;
}
#endif
/*-------------------------------------------------------------------------*/
#if 0 /* FIXME */
/* both iso and interrupt requests have periods; this routine puts them
* into the schedule tree in the apppropriate place. most iso devices use
* 1msec periods, but that's not required.
*/
static void periodic_link (struct admhcd *ahcd, struct ed *ed)
{
unsigned i;
admhc_vdbg (ahcd, "link %sed %p branch %d [%dus.], interval %d\n",
(ed->hwINFO & cpu_to_hc32 (ahcd, ED_ISO)) ? "iso " : "",
ed, ed->branch, ed->load, ed->interval);
for (i = ed->branch; i < NUM_INTS; i += ed->interval) {
struct ed **prev = &ahcd->periodic [i];
__hc32 *prev_p = &ahcd->hcca->int_table [i];
struct ed *here = *prev;
/* sorting each branch by period (slow before fast)
* lets us share the faster parts of the tree.
* (plus maybe: put interrupt eds before iso)
*/
while (here && ed != here) {
if (ed->interval > here->interval)
break;
prev = &here->ed_next;
prev_p = &here->hwNextED;
here = *prev;
}
if (ed != here) {
ed->ed_next = here;
if (here)
ed->hwNextED = *prev_p;
wmb ();
*prev = ed;
*prev_p = cpu_to_hc32(ahcd, ed->dma);
wmb();
}
ahcd->load [i] += ed->load;
}
admhcd_to_hcd(ahcd)->self.bandwidth_allocated += ed->load / ed->interval;
}
#endif
/* link an ed into the HC chain */
static int ed_schedule(struct admhcd *ahcd, struct ed *ed)
{
struct ed *old_tail;
if (admhcd_to_hcd(ahcd)->state == HC_STATE_QUIESCING)
return -EAGAIN;
ed->state = ED_OPER;
old_tail = ahcd->ed_tails[ed->type];
ed->ed_next = old_tail->ed_next;
if (ed->ed_next) {
ed->ed_next->ed_prev = ed;
ed->hwNextED = cpu_to_hc32(ahcd, ed->ed_next->dma);
}
ed->ed_prev = old_tail;
old_tail->ed_next = ed;
old_tail->hwNextED = cpu_to_hc32(ahcd, ed->dma);
ahcd->ed_tails[ed->type] = ed;
admhc_dma_enable(ahcd);
return 0;
}
/*-------------------------------------------------------------------------*/
#if 0 /* FIXME */
/* scan the periodic table to find and unlink this ED */
static void periodic_unlink (struct admhcd *ahcd, struct ed *ed)
{
int i;
for (i = ed->branch; i < NUM_INTS; i += ed->interval) {
struct ed *temp;
struct ed **prev = &ahcd->periodic [i];
__hc32 *prev_p = &ahcd->hcca->int_table [i];
while (*prev && (temp = *prev) != ed) {
prev_p = &temp->hwNextED;
prev = &temp->ed_next;
}
if (*prev) {
*prev_p = ed->hwNextED;
*prev = ed->ed_next;
}
ahcd->load [i] -= ed->load;
}
admhcd_to_hcd(ahcd)->self.bandwidth_allocated -= ed->load / ed->interval;
admhc_vdbg (ahcd, "unlink %sed %p branch %d [%dus.], interval %d\n",
(ed->hwINFO & cpu_to_hc32 (ahcd, ED_ISO)) ? "iso " : "",
ed, ed->branch, ed->load, ed->interval);
}
#endif
/* unlink an ed from the HC chain.
* just the link to the ed is unlinked.
* the link from the ed still points to another operational ed or 0
* so the HC can eventually finish the processing of the unlinked ed
* (assuming it already started that, which needn't be true).
*
* ED_UNLINK is a transient state: the HC may still see this ED, but soon
* it won't. ED_SKIP means the HC will finish its current transaction,
* but won't start anything new. The TD queue may still grow; device
* drivers don't know about this HCD-internal state.
*
* When the HC can't see the ED, something changes ED_UNLINK to one of:
*
* - ED_OPER: when there's any request queued, the ED gets rescheduled
* immediately. HC should be working on them.
*
* - ED_IDLE: when there's no TD queue. there's no reason for the HC
* to care about this ED; safe to disable the endpoint.
*
* When finish_unlinks() runs later, after SOF interrupt, it will often
* complete one or more URB unlinks before making that state change.
*/
static void ed_deschedule(struct admhcd *ahcd, struct ed *ed)
{
ed->hwINFO |= cpu_to_hc32(ahcd, ED_SKIP);
wmb();
ed->state = ED_UNLINK;
/* remove this ED from the HC list */
ed->ed_prev->hwNextED = ed->hwNextED;
/* and remove it from our list also */
ed->ed_prev->ed_next = ed->ed_next;
if (ed->ed_next)
ed->ed_next->ed_prev = ed->ed_prev;
if (ahcd->ed_tails[ed->type] == ed)
ahcd->ed_tails[ed->type] = ed->ed_prev;
}
/*-------------------------------------------------------------------------*/
static struct ed *ed_create(struct admhcd *ahcd, unsigned int type, u32 info) static struct ed *ed_create(struct admhcd *ahcd, unsigned int type, u32 info)
{ {
struct ed *ed; struct ed *ed;
@ -274,12 +91,12 @@ static struct ed *ed_create(struct admhcd *ahcd, unsigned int type, u32 info)
} }
ed->dummy = td; ed->dummy = td;
ed->state = ED_IDLE; ed->state = ED_NEW;
ed->type = type; ed->type = type;
ed->hwINFO = cpu_to_hc32(ahcd, info); ed->hwINFO = cpu_to_hc32(ahcd, info);
ed->hwTailP = cpu_to_hc32(ahcd, td->td_dma); ed->hwTailP = cpu_to_hc32(ahcd, td->td_dma);
ed->hwHeadP = ed->hwTailP; /* ED_C, ED_H zeroed */ ed->hwHeadP = cpu_to_hc32(ahcd, td->td_dma);
return ed; return ed;
@ -321,76 +138,118 @@ static struct ed *ed_get(struct admhcd *ahcd, struct usb_host_endpoint *ep,
return ed; return ed;
} }
/*-------------------------------------------------------------------------*/ /* link an ed into the HC chain */
static int ed_schedule(struct admhcd *ahcd, struct ed *ed)
/* request unlinking of an endpoint from an operational HC.
* put the ep on the rm_list
* real work is done at the next start frame (SOFI) hardware interrupt
* caller guarantees HCD is running, so hardware access is safe,
* and that ed->state is ED_OPER
*/
static void start_ed_unlink(struct admhcd *ahcd, struct ed *ed)
{ {
ed->hwINFO |= cpu_to_hc32 (ahcd, ED_DEQUEUE); struct ed *old_tail;
ed_deschedule(ahcd, ed);
if (admhcd_to_hcd(ahcd)->state == HC_STATE_QUIESCING)
return -EAGAIN;
if (ed->state != ED_NEW)
return 0;
admhc_dump_ed(ahcd, "ED-SCHED", ed, 0);
ed->state = ED_IDLE;
admhc_dma_lock(ahcd);
ed->hwINFO &= ~cpu_to_hc32(ahcd, ED_SKIP);
old_tail = ahcd->ed_tails[ed->type];
ed->ed_next = old_tail->ed_next;
if (ed->ed_next) {
ed->ed_next->ed_prev = ed;
ed->hwNextED = cpu_to_hc32(ahcd, ed->ed_next->dma);
}
ed->ed_prev = old_tail;
old_tail->ed_next = ed;
old_tail->hwNextED = cpu_to_hc32(ahcd, ed->dma);
ahcd->ed_tails[ed->type] = ed;
admhc_dma_unlock(ahcd);
admhc_intr_enable(ahcd, ADMHC_INTR_SOFI);
return 0;
}
static void ed_deschedule(struct admhcd *ahcd, struct ed *ed)
{
admhc_dump_ed(ahcd, "ED-DESCHED", ed, 0);
/* remove this ED from the HC list */
admhc_dma_lock(ahcd);
ed->ed_prev->hwNextED = ed->hwNextED;
admhc_dma_unlock(ahcd);
/* and remove it from our list */
ed->ed_prev->ed_next = ed->ed_next;
if (ed->ed_next) {
ed->ed_next->ed_prev = ed->ed_prev;
ed->ed_next = NULL;
}
if (ahcd->ed_tails[ed->type] == ed)
ahcd->ed_tails[ed->type] = ed->ed_prev;
ed->state = ED_NEW;
}
static void ed_start_deschedule(struct admhcd *ahcd, struct ed *ed)
{
admhc_dump_ed(ahcd, "ED-UNLINK", ed, 0);
admhc_dma_lock(ahcd);
ed->hwINFO |= cpu_to_hc32(ahcd, ED_SKIP);
admhc_dma_unlock(ahcd);
ed->state = ED_UNLINK;
/* add this ED into the remove list */ /* add this ED into the remove list */
ed->ed_rm_next = ahcd->ed_rm_list; ed->ed_rm_next = ahcd->ed_rm_list;
ahcd->ed_rm_list = ed; ahcd->ed_rm_list = ed;
/* enable SOF interrupt */
admhc_intr_ack(ahcd, ADMHC_INTR_SOFI);
admhc_intr_enable(ahcd, ADMHC_INTR_SOFI);
/* flush those writes */
admhc_writel_flush(ahcd);
/* SOF interrupt might get delayed; record the frame counter value that /* SOF interrupt might get delayed; record the frame counter value that
* indicates when the HC isn't looking at it, so concurrent unlinks * indicates when the HC isn't looking at it, so concurrent unlinks
* behave. frame_no wraps every 2^16 msec, and changes right before * behave. frame_no wraps every 2^16 msec, and changes right before
* SOF is triggered. * SOF is triggered.
*/ */
ed->tick = admhc_frame_no(ahcd) + 1; ed->tick = admhc_frame_no(ahcd) + 1;
/* enable SOF interrupt */
admhc_intr_enable(ahcd, ADMHC_INTR_SOFI);
} }
/*-------------------------------------------------------------------------* /*-------------------------------------------------------------------------*
* TD handling functions * TD handling functions
*-------------------------------------------------------------------------*/ *-------------------------------------------------------------------------*/
/* enqueue next TD for this URB (OHCI spec 5.2.8.2) */ static void td_fill(struct admhcd *ahcd, u32 info, dma_addr_t data, int len,
struct urb_priv *up)
static void
td_fill(struct admhcd *ahcd, u32 info, dma_addr_t data, int len,
struct urb *urb, int index)
{ {
struct td *td, *td_pt; struct td *td;
struct urb_priv *urb_priv = urb->hcpriv; u32 cbl = 0;
int hash;
u32 cbl = 0;
#if 1 if (up->td_idx >= up->td_cnt) {
if (index == (urb_priv->td_cnt - 1) && admhc_dbg(ahcd, "td_fill error, idx=%d, cnt=%d\n", up->td_idx,
((urb->transfer_flags & URB_NO_INTERRUPT) == 0)) up->td_cnt);
cbl |= TD_IE; return;
#else }
if (index == (urb_priv->td_cnt - 1))
cbl |= TD_IE;
#endif
/* use this td as the next dummy */ td = up->td[up->td_idx];
td_pt = urb_priv->td[index];
/* fill the old dummy TD */
td = urb_priv->td[index] = urb_priv->ed->dummy;
urb_priv->ed->dummy = td_pt;
td->ed = urb_priv->ed;
td->next_dl_td = NULL;
td->index = index;
td->urb = urb;
td->data_dma = data; td->data_dma = data;
if (!len) if (!len)
data = 0; data = 0;
#if 1
if (up->td_idx == up->td_cnt-1)
#endif
cbl |= TD_IE;
if (data) if (data)
cbl |= (len & TD_BL_MASK); cbl |= (len & TD_BL_MASK);
@ -400,19 +259,11 @@ td_fill(struct admhcd *ahcd, u32 info, dma_addr_t data, int len,
td->hwINFO = cpu_to_hc32(ahcd, info); td->hwINFO = cpu_to_hc32(ahcd, info);
td->hwDBP = cpu_to_hc32(ahcd, data); td->hwDBP = cpu_to_hc32(ahcd, data);
td->hwCBL = cpu_to_hc32(ahcd, cbl); td->hwCBL = cpu_to_hc32(ahcd, cbl);
td->hwNextTD = cpu_to_hc32(ahcd, td_pt->td_dma);
/* append to queue */ if (up->td_idx > 0)
list_add_tail(&td->td_list, &td->ed->td_list); up->td[up->td_idx-1]->hwNextTD = cpu_to_hc32(ahcd, td->td_dma);
/* hash it for later reverse mapping */ up->td_idx++;
hash = TD_HASH_FUNC(td->td_dma);
td->td_hash = ahcd->td_hash[hash];
ahcd->td_hash[hash] = td;
/* HC might read the TD (or cachelines) right away ... */
wmb();
td->ed->hwTailP = td->hwNextTD;
} }
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
@ -430,9 +281,7 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
int cnt = 0; int cnt = 0;
u32 info = 0; u32 info = 0;
int is_out = usb_pipeout(urb->pipe); int is_out = usb_pipeout(urb->pipe);
int periodic = 0;
u32 toggle = 0; u32 toggle = 0;
struct td *td;
/* OHCI handles the bulk/interrupt data toggles itself. We just /* OHCI handles the bulk/interrupt data toggles itself. We just
* use the device toggle bits for resetting, and rely on the fact * use the device toggle bits for resetting, and rely on the fact
@ -448,7 +297,6 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
} }
urb_priv->td_idx = 0; urb_priv->td_idx = 0;
list_add(&urb_priv->pending, &ahcd->pending);
if (data_len) if (data_len)
data = urb->transfer_dma; data = urb->transfer_dma;
@ -469,7 +317,7 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
info |= (urb->start_frame & TD_FN_MASK); info |= (urb->start_frame & TD_FN_MASK);
info |= (urb->interval & TD_ISI_MASK) << TD_ISI_SHIFT; info |= (urb->interval & TD_ISI_MASK) << TD_ISI_SHIFT;
td_fill(ahcd, info, data, data_len, urb, cnt); td_fill(ahcd, info, data, data_len, urb_priv);
cnt++; cnt++;
admhcd_to_hcd(ahcd)->self.bandwidth_int_reqs++; admhcd_to_hcd(ahcd)->self.bandwidth_int_reqs++;
@ -483,20 +331,20 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
/* TDs _could_ transfer up to 8K each */ /* TDs _could_ transfer up to 8K each */
while (data_len > TD_DATALEN_MAX) { while (data_len > TD_DATALEN_MAX) {
td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle), td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle),
data, TD_DATALEN_MAX, urb, cnt); data, TD_DATALEN_MAX, urb_priv);
data += TD_DATALEN_MAX; data += TD_DATALEN_MAX;
data_len -= TD_DATALEN_MAX; data_len -= TD_DATALEN_MAX;
cnt++; cnt++;
} }
td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle), data, td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle), data,
data_len, urb, cnt); data_len, urb_priv);
cnt++; cnt++;
if ((urb->transfer_flags & URB_ZERO_PACKET) if ((urb->transfer_flags & URB_ZERO_PACKET)
&& (cnt < urb_priv->td_cnt)) { && (cnt < urb_priv->td_cnt)) {
td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle), td_fill(ahcd, info | ((cnt) ? TD_T_CARRY : toggle),
0, 0, urb, cnt); 0, 0, urb_priv);
cnt++; cnt++;
} }
break; break;
@ -507,21 +355,24 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
case PIPE_CONTROL: case PIPE_CONTROL:
/* fill a TD for the setup */ /* fill a TD for the setup */
info = TD_SCC_NOTACCESSED | TD_DP_SETUP | TD_T_DATA0; info = TD_SCC_NOTACCESSED | TD_DP_SETUP | TD_T_DATA0;
td_fill(ahcd, info, urb->setup_dma, 8, urb, cnt++); td_fill(ahcd, info, urb->setup_dma, 8, urb_priv);
cnt++;
if (data_len > 0) { if (data_len > 0) {
/* fill a TD for the data */ /* fill a TD for the data */
info = TD_SCC_NOTACCESSED | TD_T_DATA1; info = TD_SCC_NOTACCESSED | TD_T_DATA1;
info |= is_out ? TD_DP_OUT : TD_DP_IN; info |= is_out ? TD_DP_OUT : TD_DP_IN;
/* NOTE: mishandles transfers >8K, some >4K */ /* NOTE: mishandles transfers >8K, some >4K */
td_fill(ahcd, info, data, data_len, urb, cnt++); td_fill(ahcd, info, data, data_len, urb_priv);
cnt++;
} }
/* fill a TD for the ACK */ /* fill a TD for the ACK */
info = (is_out || data_len == 0) info = (is_out || data_len == 0)
? TD_SCC_NOTACCESSED | TD_DP_IN | TD_T_DATA1 ? TD_SCC_NOTACCESSED | TD_DP_IN | TD_T_DATA1
: TD_SCC_NOTACCESSED | TD_DP_OUT | TD_T_DATA1; : TD_SCC_NOTACCESSED | TD_DP_OUT | TD_T_DATA1;
td_fill(ahcd, info, data, 0, urb, cnt++); td_fill(ahcd, info, data, 0, urb_priv);
cnt++;
break; break;
@ -538,7 +389,8 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
frame &= TD_FN_MASK; frame &= TD_FN_MASK;
td_fill(ahcd, info | frame, td_fill(ahcd, info | frame,
data + urb->iso_frame_desc[cnt].offset, data + urb->iso_frame_desc[cnt].offset,
urb->iso_frame_desc[cnt].length, urb, cnt); urb->iso_frame_desc[cnt].length,
urb_priv);
} }
admhcd_to_hcd(ahcd)->self.bandwidth_isoc_reqs++; admhcd_to_hcd(ahcd)->self.bandwidth_isoc_reqs++;
break; break;
@ -546,20 +398,22 @@ static void td_submit_urb(struct admhcd *ahcd, struct urb *urb)
if (urb_priv->td_cnt != cnt) if (urb_priv->td_cnt != cnt)
admhc_err(ahcd, "bad number of tds created for urb %p\n", urb); admhc_err(ahcd, "bad number of tds created for urb %p\n", urb);
}
/*-------------------------------------------------------------------------* urb_priv->td_idx = 0;
* Done List handling functions }
*-------------------------------------------------------------------------*/
/* calculate transfer length/status and update the urb /* calculate transfer length/status and update the urb
* PRECONDITION: irqsafe (only for urb->status locking) * PRECONDITION: irqsafe (only for urb->status locking)
*/ */
static void td_done(struct admhcd *ahcd, struct urb *urb, struct td *td) static int td_done(struct admhcd *ahcd, struct urb *urb, struct td *td)
{ {
u32 info = hc32_to_cpup(ahcd, &td->hwINFO); u32 info = hc32_to_cpup(ahcd, &td->hwINFO);
u32 dbp = hc32_to_cpup(ahcd, &td->hwDBP);
u32 cbl = TD_BL_GET(hc32_to_cpup(ahcd, &td->hwCBL));
int type = usb_pipetype(urb->pipe); int type = usb_pipetype(urb->pipe);
int cc = TD_CC_NOERROR; int cc;
cc = TD_CC_GET(info);
/* ISO ... drivers see per-TD length/status */ /* ISO ... drivers see per-TD length/status */
if (type == PIPE_ISOCHRONOUS) { if (type == PIPE_ISOCHRONOUS) {
@ -576,16 +430,17 @@ static void td_done(struct admhcd *ahcd, struct urb *urb, struct td *td)
return; return;
if (usb_pipeout (urb->pipe)) if (usb_pipeout (urb->pipe))
dlen = urb->iso_frame_desc [td->index].length; dlen = urb->iso_frame_desc[td->index].length;
else { else {
/* short reads are always OK for ISO */ /* short reads are always OK for ISO */
if (cc == TD_DATAUNDERRUN) if (cc == TD_DATAUNDERRUN)
cc = TD_CC_NOERROR; cc = TD_CC_NOERROR;
dlen = tdPSW & 0x3ff; dlen = tdPSW & 0x3ff;
} }
urb->actual_length += dlen; urb->actual_length += dlen;
urb->iso_frame_desc [td->index].actual_length = dlen; urb->iso_frame_desc[td->index].actual_length = dlen;
urb->iso_frame_desc [td->index].status = cc_to_error [cc]; urb->iso_frame_desc[td->index].status = cc_to_error[cc];
if (cc != TD_CC_NOERROR) if (cc != TD_CC_NOERROR)
admhc_vdbg (ahcd, admhc_vdbg (ahcd,
@ -597,39 +452,15 @@ static void td_done(struct admhcd *ahcd, struct urb *urb, struct td *td)
* might not be reported as errors. * might not be reported as errors.
*/ */
} else { } else {
u32 bl = TD_BL_GET(hc32_to_cpup(ahcd, &td->hwCBL)); admhc_dump_td(ahcd, "td_done", td);
u32 tdDBP = hc32_to_cpup(ahcd, &td->hwDBP);
cc = TD_CC_GET(info);
/* update packet status if needed (short is normally ok) */
if (cc == TD_CC_DATAUNDERRUN
&& !(urb->transfer_flags & URB_SHORT_NOT_OK))
cc = TD_CC_NOERROR;
if (cc != TD_CC_NOERROR && cc < TD_CC_HCD0) {
admhc_dump_ed(ahcd, "CC ERROR", td->ed, 1);
spin_lock(&urb->lock);
if (urb->status == -EINPROGRESS)
urb->status = cc_to_error[cc];
spin_unlock(&urb->lock);
}
/* count all non-empty packets except control SETUP packet */ /* count all non-empty packets except control SETUP packet */
if ((type != PIPE_CONTROL || td->index != 0) && tdDBP != 0) { if ((type != PIPE_CONTROL || td->index != 0) && dbp != 0) {
urb->actual_length += tdDBP - td->data_dma + bl; urb->actual_length += dbp - td->data_dma + cbl;
} }
if (cc != TD_CC_NOERROR && cc < TD_CC_HCD0)
admhc_vdbg(ahcd,
"urb %p td %p (%d) cc %d, len=%d/%d\n",
urb, td, td->index, cc,
urb->actual_length,
urb->transfer_buffer_length);
} }
list_del(&td->td_list); return cc;
} }
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
@ -637,6 +468,7 @@ static void td_done(struct admhcd *ahcd, struct urb *urb, struct td *td)
static inline struct td * static inline struct td *
ed_halted(struct admhcd *ahcd, struct td *td, int cc, struct td *rev) ed_halted(struct admhcd *ahcd, struct td *td, int cc, struct td *rev)
{ {
#if 0
struct urb *urb = td->urb; struct urb *urb = td->urb;
struct ed *ed = td->ed; struct ed *ed = td->ed;
struct list_head *tmp = td->td_list.next; struct list_head *tmp = td->td_list.next;
@ -708,195 +540,111 @@ ed_halted(struct admhcd *ahcd, struct td *td, int cc, struct td *rev)
} }
return rev; return rev;
#else
return NULL;
#endif
} }
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
/* there are some urbs/eds to unlink; called in_irq(), with HCD locked */ static int ed_next_urb(struct admhcd *ahcd, struct ed *ed)
static void
finish_unlinks(struct admhcd *ahcd, u16 tick)
{ {
struct ed *ed, **last; struct urb_priv *up;
u32 carry;
rescan_all: if (ed->state != ED_IDLE)
for (last = &ahcd->ed_rm_list, ed = *last; ed != NULL; ed = *last) { return 1;
struct list_head *entry, *tmp;
int completed, modified;
__hc32 *prev;
/* only take off EDs that the HC isn't using, accounting for if (ed->urb_active)
* frame counter wraps and EDs with partially retired TDs return 1;
*/
if (likely(HC_IS_RUNNING(admhcd_to_hcd(ahcd)->state))) {
if (tick_before (tick, ed->tick)) {
skip_ed:
last = &ed->ed_rm_next;
continue;
}
if (!list_empty (&ed->td_list)) { if (list_empty(&ed->urb_pending))
struct td *td; return 0;
u32 head;
td = list_entry(ed->td_list.next, struct td, up = list_entry(ed->urb_pending.next, struct urb_priv, pending);
td_list); list_del(&up->pending);
head = hc32_to_cpu(ahcd, ed->hwHeadP) & ed->urb_active = up;
TD_MASK; ed->state = ED_OPER;
/* INTR_WDH may need to clean up first */ #ifdef ADMHC_VERBOSE_DEBUG
if (td->td_dma != head) urb_print(ahcd, up->urb, "NEXT", 0);
goto skip_ed; admhc_dump_ed(ahcd, " ", ed, 0);
} #endif
}
/* reentrancy: if we drop the schedule lock, someone might up->td[up->td_cnt-1]->hwNextTD = cpu_to_hc32(ahcd, ed->dummy->td_dma);
* have modified this list. normally it's just prepending
* entries (which we'd ignore), but paranoia won't hurt.
*/
*last = ed->ed_rm_next;
ed->ed_rm_next = NULL;
modified = 0;
/* unlink urbs as requested, but rescan the list after admhc_dma_lock(ahcd);
* we call a completion since it might have unlinked carry = hc32_to_cpup(ahcd, &ed->hwHeadP) & ED_C;
* another (earlier) urb ed->hwHeadP = cpu_to_hc32(ahcd, up->td[0]->td_dma | carry);
* ed->hwINFO &= ~cpu_to_hc32(ahcd, ED_SKIP);
* When we get here, the HC doesn't see this ed. But it admhc_dma_unlock(ahcd);
* must not be rescheduled until all completed URBs have
* been given back to the driver.
*/
rescan_this:
completed = 0;
prev = &ed->hwHeadP;
list_for_each_safe (entry, tmp, &ed->td_list) {
struct td *td;
struct urb *urb;
struct urb_priv *urb_priv;
__hc32 savebits;
td = list_entry(entry, struct td, td_list); return 1;
urb = td->urb;
urb_priv = td->urb->hcpriv;
if (urb->status == -EINPROGRESS) {
prev = &td->hwNextTD;
continue;
}
if ((urb_priv) == NULL)
continue;
/* patch pointer hc uses */
savebits = *prev & ~cpu_to_hc32(ahcd, TD_MASK);
*prev = td->hwNextTD | savebits;
/* HC may have partly processed this TD */
urb_print(urb, "PARTIAL",1);
td_done(ahcd, urb, td);
urb_priv->td_idx++;
/* if URB is done, clean up */
if (urb_priv->td_idx == urb_priv->td_cnt) {
modified = completed = 1;
finish_urb(ahcd, urb);
}
}
if (completed && !list_empty (&ed->td_list))
goto rescan_this;
/* ED's now officially unlinked, hc doesn't see */
ed->state = ED_IDLE;
ed->hwHeadP &= ~cpu_to_hc32(ahcd, ED_H);
ed->hwNextED = 0;
wmb ();
ed->hwINFO &= ~cpu_to_hc32 (ahcd, ED_SKIP | ED_DEQUEUE);
/* but if there's work queued, reschedule */
if (!list_empty (&ed->td_list)) {
if (HC_IS_RUNNING(admhcd_to_hcd(ahcd)->state))
ed_schedule(ahcd, ed);
}
if (modified)
goto rescan_all;
}
} }
/*-------------------------------------------------------------------------*/ static void ed_update(struct admhcd *ahcd, struct ed *ed, int partial)
/*
* Process normal completions (error or success) and clean the schedules.
*
* This is the main path for handing urbs back to drivers. The only other
* path is finish_unlinks(), which unlinks URBs using ed_rm_list, instead of
* scanning the (re-reversed) donelist as this does.
*/
static void ed_update(struct admhcd *ahcd, struct ed *ed)
{ {
struct list_head *entry,*tmp; struct urb_priv *up;
struct urb *urb;
int cc;
admhc_dump_ed(ahcd, "ed update", ed, 1); up = ed->urb_active;
if (!up)
return;
list_for_each_safe(entry, tmp, &ed->td_list) { urb = up->urb;
struct td *td = list_entry(entry, struct td, td_list);
struct urb *urb = td->urb; #ifdef ADMHC_VERBOSE_DEBUG
struct urb_priv *urb_priv = urb->hcpriv; urb_print(ahcd, urb, "UPDATE", 0);
#endif
admhc_dump_ed(ahcd, "ED-UPDATE", ed, 1);
cc = TD_CC_NOERROR;
for (; up->td_idx < up->td_cnt; up->td_idx++) {
struct td *td = up->td[up->td_idx];
if (hc32_to_cpup(ahcd, &td->hwINFO) & TD_OWN) if (hc32_to_cpup(ahcd, &td->hwINFO) & TD_OWN)
break; break;
/* update URB's length and status from TD */ cc = td_done(ahcd, urb, td);
td_done(ahcd, urb, td); if (cc != TD_CC_NOERROR) {
urb_priv->td_idx++; admhc_vdbg(ahcd,
"urb %p td %p (%d) cc %d, len=%d/%d\n",
urb, td, td->index, cc,
urb->actual_length,
urb->transfer_buffer_length);
/* If all this urb's TDs are done, call complete() */ up->td_idx = up->td_cnt;
if (urb_priv->td_idx == urb_priv->td_cnt) break;
finish_urb(ahcd, urb);
/* clean schedule: unlink EDs that are no longer busy */
if (list_empty(&ed->td_list)) {
if (ed->state == ED_OPER)
start_ed_unlink(ahcd, ed);
/* ... reenabling halted EDs only after fault cleanup */
} else if ((ed->hwINFO & cpu_to_hc32 (ahcd,
ED_SKIP | ED_DEQUEUE))
== cpu_to_hc32 (ahcd, ED_SKIP)) {
td = list_entry(ed->td_list.next, struct td, td_list);
#if 0
if (!(td->hwINFO & cpu_to_hc32 (ahcd, TD_DONE))) {
ed->hwINFO &= ~cpu_to_hc32 (ahcd, ED_SKIP);
/* ... hc may need waking-up */
switch (ed->type) {
case PIPE_CONTROL:
admhc_writel (ahcd, OHCI_CLF,
&ahcd->regs->cmdstatus);
break;
case PIPE_BULK:
admhc_writel (ahcd, OHCI_BLF,
&ahcd->regs->cmdstatus);
break;
}
}
#else
if ((td->hwINFO & cpu_to_hc32(ahcd, TD_OWN)))
ed->hwINFO &= ~cpu_to_hc32(ahcd, ED_SKIP);
#endif
} }
} }
}
static void ed_halt(struct admhcd *ahcd, struct ed *ed) if ((up->td_idx != up->td_cnt) && (!partial))
{ /* the URB is not completed yet */
admhc_dump_ed(ahcd, "ed_halt", ed, 1); return;
/* update packet status if needed (short is normally ok) */
if (cc == TD_CC_DATAUNDERRUN
&& !(urb->transfer_flags & URB_SHORT_NOT_OK))
cc = TD_CC_NOERROR;
if (cc != TD_CC_NOERROR && cc < TD_CC_HCD0) {
spin_lock(&urb->lock);
if (urb->status == -EINPROGRESS)
urb->status = cc_to_error[cc];
spin_unlock(&urb->lock);
}
finish_urb(ahcd, urb);
ed->urb_active = NULL;
ed->state = ED_IDLE;
} }
/* there are some tds completed; called in_irq(), with HCD locked */ /* there are some tds completed; called in_irq(), with HCD locked */
static void admhc_td_complete(struct admhcd *ahcd) static void admhc_td_complete(struct admhcd *ahcd)
{ {
struct ed *ed; struct ed *ed;
for (ed = ahcd->ed_head; ed; ed = ed->ed_next) { for (ed = ahcd->ed_head; ed; ed = ed->ed_next) {
if (ed->state != ED_OPER) if (ed->state != ED_OPER)
@ -906,10 +654,59 @@ static void admhc_td_complete(struct admhcd *ahcd)
continue; continue;
if (hc32_to_cpup(ahcd, &ed->hwHeadP) & ED_H) { if (hc32_to_cpup(ahcd, &ed->hwHeadP) & ED_H) {
ed_halt(ahcd, ed); /* TODO */
continue; continue;
} }
ed_update(ahcd, ed); ed_update(ahcd, ed, 0);
}
}
/* there are some urbs/eds to unlink; called in_irq(), with HCD locked */
static void admhc_finish_unlinks(struct admhcd *ahcd, u16 tick)
{
struct ed *ed;
for (ed = ahcd->ed_head; ed; ed = ed->ed_next) {
if (ed->state != ED_UNLINK)
continue;
if (likely(HC_IS_RUNNING(admhcd_to_hcd(ahcd)->state)))
if (tick_before(tick, ed->tick))
continue;
/* process partial status */
ed_update(ahcd, ed, 1);
}
}
static void admhc_sof_refill(struct admhcd *ahcd)
{
struct ed *ed;
int disable_dma = 1;
for (ed = ahcd->ed_head; ed; ed = ed->ed_next) {
if (hc32_to_cpup(ahcd, &ed->hwHeadP) & ED_H) {
ed_update(ahcd, ed, 1);
ed->hwHeadP &= ~cpu_to_hc32 (ahcd, ED_H);
}
if (ed_next_urb(ahcd, ed)) {
disable_dma = 0;
} else {
struct ed *tmp;
tmp = ed->ed_prev;
ed_deschedule(ahcd, ed);
ed = tmp;
}
}
if (disable_dma) {
admhc_intr_disable(ahcd, ADMHC_INTR_SOFI);
admhc_dma_disable(ahcd);
} else {
admhc_intr_enable(ahcd, ADMHC_INTR_SOFI);
admhc_dma_enable(ahcd);
} }
} }

View file

@ -56,7 +56,8 @@ struct ed {
dma_addr_t dma; /* addr of ED */ dma_addr_t dma; /* addr of ED */
struct td *dummy; /* next TD to activate */ struct td *dummy; /* next TD to activate */
struct list_head urb_list; /* list of our URBs */ struct urb_priv *urb_active; /* active URB */
struct list_head urb_pending; /* pending URBs */
struct list_head ed_list; /* list of all EDs*/ struct list_head ed_list; /* list of all EDs*/
struct list_head rm_list; /* for remove list */ struct list_head rm_list; /* for remove list */
@ -65,16 +66,15 @@ struct ed {
struct ed *ed_next; /* on schedule list */ struct ed *ed_next; /* on schedule list */
struct ed *ed_prev; /* for non-interrupt EDs */ struct ed *ed_prev; /* for non-interrupt EDs */
struct ed *ed_rm_next; /* on rm list */ struct ed *ed_rm_next; /* on rm list */
struct ed *ed_soft_list; /* on software int list */
struct list_head td_list; /* "shadow list" of our TDs */
/* create --> IDLE --> OPER --> ... --> IDLE --> destroy /* create --> IDLE --> OPER --> ... --> IDLE --> destroy
* usually: OPER --> UNLINK --> (IDLE | OPER) --> ... * usually: OPER --> UNLINK --> (IDLE | OPER) --> ...
*/ */
u8 state; /* ED_{IDLE,UNLINK,OPER} */ u8 state;
#define ED_IDLE 0x00 /* NOT linked to HC */ #define ED_NEW 0x00 /* just allocated */
#define ED_UNLINK 0x01 /* being unlinked from hc */ #define ED_IDLE 0x01 /* linked into HC, but not running */
#define ED_OPER 0x02 /* IS linked to hc */ #define ED_OPER 0x02 /* linked into HC and running */
#define ED_UNLINK 0x03 /* being unlinked from HC */
u8 type; /* PIPE_{BULK,...} */ u8 type; /* PIPE_{BULK,...} */
@ -115,16 +115,17 @@ struct td {
#define TD_T_SHIFT 23 /* data toggle state */ #define TD_T_SHIFT 23 /* data toggle state */
#define TD_T_MASK 0x3 #define TD_T_MASK 0x3
#define TD_T (TD_T_MASK << TD_T_SHIFT) #define TD_T (TD_T_MASK << TD_T_SHIFT)
#define TD_T_DATA0 (0x2 << TD_T_SHIFT) /* DATA0 */ #define TD_T_DATA0 (0x2 << TD_T_SHIFT) /* DATA0 */
#define TD_T_DATA1 (0x3 << TD_T_SHIFT) /* DATA1 */ #define TD_T_DATA1 (0x3 << TD_T_SHIFT) /* DATA1 */
#define TD_T_CARRY (0x0 << TD_T_SHIFT) /* uses ED_C */ #define TD_T_CARRY (0x0 << TD_T_SHIFT) /* uses ED_C */
#define TD_T_GET(x) (((x) >> TD_T_SHIFT) & TD_T_MASK) #define TD_T_GET(x) (((x) >> TD_T_SHIFT) & TD_T_MASK)
#define TD_DP_SHIFT 21 /* direction/pid */ #define TD_DP_SHIFT 21 /* direction/pid */
#define TD_DP_MASK 0x3 #define TD_DP_MASK 0x3
#define TD_DP (TD_DP_MASK << TD_DP_SHIFT) #define TD_DP (TD_DP_MASK << TD_DP_SHIFT)
#define TD_DP_SETUP (0x0 << TD_DP_SHIFT) /* SETUP pid */ #define TD_DP_SETUP (0x0 << TD_DP_SHIFT) /* SETUP pid */
#define TD_DP_OUT (0x1 << TD_DP_SHIFT) /* OUT pid */ #define TD_DP_OUT (0x1 << TD_DP_SHIFT) /* OUT pid */
#define TD_DP_IN (0x2 << TD_DP_SHIFT) /* IN pid */ #define TD_DP_IN (0x2 << TD_DP_SHIFT) /* IN pid */
#define TD_DP_GET(x) (((x) >> TD_DP_SHIFT) & TD_DP_MASK)
#define TD_ISI_SHIFT 8 /* Interrupt Service Interval */ #define TD_ISI_SHIFT 8 /* Interrupt Service Interval */
#define TD_ISI_MASK 0x3f #define TD_ISI_MASK 0x3f
#define TD_ISI_GET(x) (((x) >> TD_ISI_SHIFT) & TD_ISI_MASK) #define TD_ISI_GET(x) (((x) >> TD_ISI_SHIFT) & TD_ISI_MASK)
@ -142,19 +143,12 @@ struct td {
/* rest are purely for the driver's use */ /* rest are purely for the driver's use */
__u8 index; __u8 index;
struct ed *ed; /* struct ed *ed;*/
struct td *td_hash; /* dma-->td hashtable */
struct td *next_dl_td;
struct urb *urb; struct urb *urb;
dma_addr_t td_dma; /* addr of this TD */ dma_addr_t td_dma; /* addr of this TD */
dma_addr_t data_dma; /* addr of data it points to */ dma_addr_t data_dma; /* addr of data it points to */
struct list_head td_list; /* "shadow list", TDs on same ED */
u32 flags;
#define TD_FLAG_DONE (1 << 17) /* retired to done list */
#define TD_FLAG_ISO (1 << 16) /* copy of ED_ISO */
} __attribute__ ((aligned(TD_ALIGN))); /* c/b/i need 16; only iso needs 32 */ } __attribute__ ((aligned(TD_ALIGN))); /* c/b/i need 16; only iso needs 32 */
/* /*
@ -354,6 +348,7 @@ struct admhcd_regs {
/* hcd-private per-urb state */ /* hcd-private per-urb state */
struct urb_priv { struct urb_priv {
struct ed *ed; struct ed *ed;
struct urb *urb;
struct list_head pending; /* URBs on the same ED */ struct list_head pending; /* URBs on the same ED */
u32 td_cnt; /* # tds in this request */ u32 td_cnt; /* # tds in this request */
@ -374,6 +369,8 @@ struct urb_priv {
struct admhcd { struct admhcd {
spinlock_t lock; spinlock_t lock;
spinlock_t dma_lock;
u32 dma_state;
/* /*
* I/O memory used to communicate with the HC (dma-consistent) * I/O memory used to communicate with the HC (dma-consistent)
@ -384,14 +381,10 @@ struct admhcd {
* hcd adds to schedule for a live hc any time, but removals finish * hcd adds to schedule for a live hc any time, but removals finish
* only at the start of the next frame. * only at the start of the next frame.
*/ */
struct ed *ed_head; struct ed *ed_head;
struct ed *ed_tails[4]; struct ed *ed_tails[4];
struct ed *ed_rm_list; /* to be removed */ struct ed *ed_rm_list; /* to be removed */
struct ed *ed_halt_list; /* halted due to an error */
struct ed *ed_soft_list; /* for software interrupt processing */
struct ed *periodic[NUM_INTS]; /* shadow int_table */ struct ed *periodic[NUM_INTS]; /* shadow int_table */
#if 0 /* TODO: remove? */ #if 0 /* TODO: remove? */
@ -408,7 +401,6 @@ struct admhcd {
struct dma_pool *td_cache; struct dma_pool *td_cache;
struct dma_pool *ed_cache; struct dma_pool *ed_cache;
struct td *td_hash[TD_HASH_SIZE]; struct td *td_hash[TD_HASH_SIZE];
struct list_head pending;
/* /*
* driver state * driver state
@ -446,6 +438,7 @@ static inline struct usb_hcd *admhcd_to_hcd(const struct admhcd *ahcd)
#define STUB_DEBUG_FILES #define STUB_DEBUG_FILES
#endif /* DEBUG */ #endif /* DEBUG */
#if 0
#define admhc_dbg(ahcd, fmt, args...) \ #define admhc_dbg(ahcd, fmt, args...) \
dev_dbg(admhcd_to_hcd(ahcd)->self.controller , fmt , ## args ) dev_dbg(admhcd_to_hcd(ahcd)->self.controller , fmt , ## args )
#define admhc_err(ahcd, fmt, args...) \ #define admhc_err(ahcd, fmt, args...) \
@ -460,6 +453,22 @@ static inline struct usb_hcd *admhcd_to_hcd(const struct admhcd *ahcd)
#else #else
# define admhc_vdbg(ahcd, fmt, args...) do { } while (0) # define admhc_vdbg(ahcd, fmt, args...) do { } while (0)
#endif #endif
#else
#define admhc_dbg(ahcd, fmt, args...) \
printk(KERN_DEBUG "adm5120-hcd: " fmt , ## args )
#define admhc_err(ahcd, fmt, args...) \
printk(KERN_ERR "adm5120-hcd: " fmt , ## args )
#define ahcd_info(ahcd, fmt, args...) \
printk(KERN_INFO "adm5120-hcd: " fmt , ## args )
#define admhc_warn(ahcd, fmt, args...) \
printk(KERN_WARNING "adm5120-hcd: " fmt , ## args )
#ifdef ADMHC_VERBOSE_DEBUG
# define admhc_vdbg admhc_dbg
#else
# define admhc_vdbg(ahcd, fmt, args...) do { } while (0)
#endif
#endif
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
@ -633,6 +642,15 @@ static inline u16 admhc_frame_no(const struct admhcd *ahcd)
return (u16)t; return (u16)t;
} }
static inline u16 admhc_frame_remain(const struct admhcd *ahcd)
{
u32 t;
t = admhc_readl(ahcd, &ahcd->regs->fmnumber) >> ADMHC_SFN_FR_SHIFT;
t &= ADMHC_SFN_FR_MASK;
return (u16)t;
}
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
static inline void admhc_disable(struct admhcd *ahcd) static inline void admhc_disable(struct admhcd *ahcd)
@ -652,7 +670,7 @@ static inline void periodic_reinit(struct admhcd *ahcd)
/* TODO: adjust FSLargestDataPacket value too? */ /* TODO: adjust FSLargestDataPacket value too? */
admhc_writel(ahcd, (fit ^ FIT) | ahcd->fminterval, admhc_writel(ahcd, (fit ^ FIT) | ahcd->fminterval,
&ahcd->regs->fminterval); &ahcd->regs->fminterval);
} }
static inline u32 admhc_get_rhdesc(struct admhcd *ahcd) static inline u32 admhc_get_rhdesc(struct admhcd *ahcd)
@ -698,17 +716,45 @@ static inline void admhc_intr_ack(struct admhcd *ahcd, u32 ints)
static inline void admhc_dma_enable(struct admhcd *ahcd) static inline void admhc_dma_enable(struct admhcd *ahcd)
{ {
ahcd->host_control = admhc_readl(ahcd, &ahcd->regs->host_control); u32 t;
if (ahcd->host_control & ADMHC_HC_DMAE)
t = admhc_readl(ahcd, &ahcd->regs->host_control);
if (t & ADMHC_HC_DMAE)
return; return;
ahcd->host_control |= ADMHC_HC_DMAE; t |= ADMHC_HC_DMAE;
admhc_writel(ahcd, ahcd->host_control, &ahcd->regs->host_control); admhc_writel(ahcd, t, &ahcd->regs->host_control);
admhc_dbg(ahcd,"DMA enabled\n");
} }
static inline void admhc_dma_disable(struct admhcd *ahcd) static inline void admhc_dma_disable(struct admhcd *ahcd)
{ {
ahcd->host_control = admhc_readl(ahcd, &ahcd->regs->host_control); u32 t;
ahcd->host_control &= ~ADMHC_HC_DMAE;
admhc_writel(ahcd, ahcd->host_control, &ahcd->regs->host_control); t = admhc_readl(ahcd, &ahcd->regs->host_control);
if (!(t & ADMHC_HC_DMAE))
return;
t &= ~ADMHC_HC_DMAE;
admhc_writel(ahcd, t, &ahcd->regs->host_control);
admhc_dbg(ahcd,"DMA disabled\n");
}
static inline void admhc_dma_lock(struct admhcd *ahcd)
{
spin_lock(ahcd->dma_lock);
ahcd->dma_state = admhc_readl(ahcd, &ahcd->regs->host_control);
admhc_writel(ahcd, 0, &ahcd->regs->hosthead);
admhc_writel(ahcd, ahcd->dma_state & ~ADMHC_HC_DMAE,
&ahcd->regs->host_control);
admhc_dbg(ahcd,"DMA locked\n");
}
static inline void admhc_dma_unlock(struct admhcd *ahcd)
{
admhc_writel(ahcd, (u32)ahcd->ed_head->dma, &ahcd->regs->hosthead);
admhc_writel(ahcd, ahcd->dma_state, &ahcd->regs->host_control);
admhc_dbg(ahcd,"DMA unlocked\n");
spin_unlock(ahcd->dma_lock);
} }