add 64 bit dma support to broadcom-wl, fixes wrt300n wifi support

SVN-Revision: 5717
This commit is contained in:
Felix Fietkau 2006-12-07 21:42:03 +00:00
parent 1c12036f6d
commit aae28d7120
2 changed files with 789 additions and 53 deletions

View file

@ -11,7 +11,7 @@
# #
# $Id: Makefile,v 1.2 2005/03/29 03:32:18 mbm Exp $ # $Id: Makefile,v 1.2 2005/03/29 03:32:18 mbm Exp $
EXTRA_CFLAGS += -I$(TOPDIR)/arch/mips/bcm947xx/include -DBCMDRIVER EXTRA_CFLAGS += -I$(TOPDIR)/arch/mips/bcm947xx/include -DBCMDRIVER=1 -DBCMDMA64=1
O_TARGET := wl$(MOD_NAME).o O_TARGET := wl$(MOD_NAME).o

View file

@ -94,6 +94,14 @@ typedef struct dma_info {
uint dataoffsethigh; /* high 32 bits */ uint dataoffsethigh; /* high 32 bits */
} dma_info_t; } dma_info_t;
#ifdef BCMDMA64
#define DMA64_ENAB(di) ((di)->dma64)
#define DMA64_CAP TRUE
#else
#define DMA64_ENAB(di) (0)
#define DMA64_CAP FALSE
#endif
/* descriptor bumping macros */ /* descriptor bumping macros */
#define XXD(x, n) ((x) & ((n) - 1)) /* faster than %, but n must be power of 2 */ #define XXD(x, n) ((x) & ((n) - 1)) /* faster than %, but n must be power of 2 */
#define TXD(x) XXD((x), di->ntxd) #define TXD(x) XXD((x), di->ntxd)
@ -114,7 +122,7 @@ typedef struct dma_info {
/* common prototypes */ /* common prototypes */
static bool _dma_isaddrext(dma_info_t *di); static bool _dma_isaddrext(dma_info_t *di);
static bool dma32_alloc(dma_info_t *di, uint direction); static bool _dma_alloc(dma_info_t *di, uint direction);
static void _dma_detach(dma_info_t *di); static void _dma_detach(dma_info_t *di);
static void _dma_ddtable_init(dma_info_t *di, uint direction, ulong pa); static void _dma_ddtable_init(dma_info_t *di, uint direction, ulong pa);
static void _dma_rxinit(dma_info_t *di); static void _dma_rxinit(dma_info_t *di);
@ -129,7 +137,7 @@ static void _dma_txunblock(dma_info_t *di);
static uint _dma_txactive(dma_info_t *di); static uint _dma_txactive(dma_info_t *di);
static void* _dma_peeknexttxp(dma_info_t *di); static void* _dma_peeknexttxp(dma_info_t *di);
static uintptr _dma_getvar(dma_info_t *di, char *name); static uintptr _dma_getvar(dma_info_t *di, const char *name);
static void _dma_counterreset(dma_info_t *di); static void _dma_counterreset(dma_info_t *di);
static void _dma_fifoloopbackenable(dma_info_t *di); static void _dma_fifoloopbackenable(dma_info_t *di);
@ -154,6 +162,94 @@ static bool dma32_rxstopped(dma_info_t *di);
static bool dma32_rxenabled(dma_info_t *di); static bool dma32_rxenabled(dma_info_t *di);
static bool _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs); static bool _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs);
/* ** 64 bit DMA prototypes and stubs */
#ifdef BCMDMA64
static bool dma64_alloc(dma_info_t *di, uint direction);
static bool dma64_txreset(dma_info_t *di);
static bool dma64_rxreset(dma_info_t *di);
static bool dma64_txsuspendedidle(dma_info_t *di);
static int dma64_txfast(dma_info_t *di, void *p0, bool commit);
static void *dma64_getnexttxp(dma_info_t *di, bool forceall);
static void *dma64_getnextrxp(dma_info_t *di, bool forceall);
static void dma64_txrotate(dma_info_t *di);
static bool dma64_rxidle(dma_info_t *di);
static void dma64_txinit(dma_info_t *di);
static bool dma64_txenabled(dma_info_t *di);
static void dma64_txsuspend(dma_info_t *di);
static void dma64_txresume(dma_info_t *di);
static bool dma64_txsuspended(dma_info_t *di);
static void dma64_txreclaim(dma_info_t *di, bool forceall);
static bool dma64_txstopped(dma_info_t *di);
static bool dma64_rxstopped(dma_info_t *di);
static bool dma64_rxenabled(dma_info_t *di);
static bool _dma64_addrext(osl_t *osh, dma64regs_t *dma64regs);
#else
static bool dma64_alloc(dma_info_t *di, uint direction) { return FALSE; }
static bool dma64_txreset(dma_info_t *di) { return FALSE; }
static bool dma64_rxreset(dma_info_t *di) { return FALSE; }
static bool dma64_txsuspendedidle(dma_info_t *di) { return FALSE;}
static int dma64_txfast(dma_info_t *di, void *p0, bool commit) { return 0; }
static void *dma64_getnexttxp(dma_info_t *di, bool forceall) { return NULL; }
static void *dma64_getnextrxp(dma_info_t *di, bool forceall) { return NULL; }
static void dma64_txrotate(dma_info_t *di) { return; }
static bool dma64_rxidle(dma_info_t *di) { return FALSE; }
static void dma64_txinit(dma_info_t *di) { return; }
static bool dma64_txenabled(dma_info_t *di) { return FALSE; }
static void dma64_txsuspend(dma_info_t *di) { return; }
static void dma64_txresume(dma_info_t *di) { return; }
static bool dma64_txsuspended(dma_info_t *di) {return FALSE; }
static void dma64_txreclaim(dma_info_t *di, bool forceall) { return; }
static bool dma64_txstopped(dma_info_t *di) { return FALSE; }
static bool dma64_rxstopped(dma_info_t *di) { return FALSE; }
static bool dma64_rxenabled(dma_info_t *di) { return FALSE; }
static bool _dma64_addrext(osl_t *osh, dma64regs_t *dma64regs) { return FALSE; }
#endif /* BCMDMA64 */
static di_fcn_t dma64proc = {
(di_detach_t)_dma_detach,
(di_txinit_t)dma64_txinit,
(di_txreset_t)dma64_txreset,
(di_txenabled_t)dma64_txenabled,
(di_txsuspend_t)dma64_txsuspend,
(di_txresume_t)dma64_txresume,
(di_txsuspended_t)dma64_txsuspended,
(di_txsuspendedidle_t)dma64_txsuspendedidle,
(di_txfast_t)dma64_txfast,
(di_txstopped_t)dma64_txstopped,
(di_txreclaim_t)dma64_txreclaim,
(di_getnexttxp_t)dma64_getnexttxp,
(di_peeknexttxp_t)_dma_peeknexttxp,
(di_txblock_t)_dma_txblock,
(di_txunblock_t)_dma_txunblock,
(di_txactive_t)_dma_txactive,
(di_txrotate_t)dma64_txrotate,
(di_rxinit_t)_dma_rxinit,
(di_rxreset_t)dma64_rxreset,
(di_rxidle_t)dma64_rxidle,
(di_rxstopped_t)dma64_rxstopped,
(di_rxenable_t)_dma_rxenable,
(di_rxenabled_t)dma64_rxenabled,
(di_rx_t)_dma_rx,
(di_rxfill_t)_dma_rxfill,
(di_rxreclaim_t)_dma_rxreclaim,
(di_getnextrxp_t)_dma_getnextrxp,
(di_fifoloopbackenable_t)_dma_fifoloopbackenable,
(di_getvar_t)_dma_getvar,
(di_counterreset_t)_dma_counterreset,
NULL,
NULL,
NULL,
34
};
static di_fcn_t dma32proc = { static di_fcn_t dma32proc = {
(di_detach_t)_dma_detach, (di_detach_t)_dma_detach,
@ -213,6 +309,16 @@ dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
/* old chips w/o sb is no longer supported */ /* old chips w/o sb is no longer supported */
ASSERT(sbh != NULL); ASSERT(sbh != NULL);
di->dma64 = ((sb_coreflagshi(sbh, 0, 0) & SBTMH_DMA64) == SBTMH_DMA64);
#ifndef BCMDMA64
if (di->dma64) {
DMA_ERROR(("dma_attach: driver doesn't have the capability to support "
"64 bits DMA\n"));
goto fail;
}
#endif
/* check arguments */ /* check arguments */
ASSERT(ISPOWEROF2(ntxd)); ASSERT(ISPOWEROF2(ntxd));
ASSERT(ISPOWEROF2(nrxd)); ASSERT(ISPOWEROF2(nrxd));
@ -223,14 +329,27 @@ dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
/* init dma reg pointer */ /* init dma reg pointer */
if (di->dma64) {
ASSERT(ntxd <= D64MAXDD);
ASSERT(nrxd <= D64MAXDD);
di->d64txregs = (dma64regs_t *)dmaregstx;
di->d64rxregs = (dma64regs_t *)dmaregsrx;
di->dma64align = D64RINGALIGN;
if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) {
/* for smaller dd table, HW relax the alignment requirement */
di->dma64align = D64RINGALIGN / 2;
}
} else {
ASSERT(ntxd <= D32MAXDD); ASSERT(ntxd <= D32MAXDD);
ASSERT(nrxd <= D32MAXDD); ASSERT(nrxd <= D32MAXDD);
di->d32txregs = (dma32regs_t *)dmaregstx; di->d32txregs = (dma32regs_t *)dmaregstx;
di->d32rxregs = (dma32regs_t *)dmaregsrx; di->d32rxregs = (dma32regs_t *)dmaregsrx;
}
DMA_TRACE(("%s: dma_attach: %s osh %p ntxd %d nrxd %d rxbufsize %d nrxpost %d " DMA_TRACE(("%s: dma_attach: %s osh %p ntxd %d nrxd %d rxbufsize %d nrxpost %d "
"rxoffset %d dmaregstx %p dmaregsrx %p\n", "rxoffset %d dmaregstx %p dmaregsrx %p\n",
name, "DMA32", osh, ntxd, nrxd, rxbufsize, name, (di->dma64 ? "DMA64" : "DMA32"), osh, ntxd, nrxd, rxbufsize,
nrxpost, rxoffset, dmaregstx, dmaregsrx)); nrxpost, rxoffset, dmaregstx, dmaregsrx));
/* make a private copy of our callers name */ /* make a private copy of our callers name */
@ -265,8 +384,15 @@ dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
di->dataoffsetlow = 0; di->dataoffsetlow = 0;
/* for pci bus, add offset */ /* for pci bus, add offset */
if (sbh->bustype == PCI_BUS) { if (sbh->bustype == PCI_BUS) {
if ((sbh->buscoretype == SB_PCIE) && di->dma64) {
/* pcie with DMA64 */
di->ddoffsetlow = 0;
di->ddoffsethigh = SB_PCIE_DMA_H32;
} else {
/* pci(DMA32/DMA64) or pcie with DMA32 */
di->ddoffsetlow = SB_PCI_DMA; di->ddoffsetlow = SB_PCI_DMA;
di->ddoffsethigh = 0; di->ddoffsethigh = 0;
}
di->dataoffsetlow = di->ddoffsetlow; di->dataoffsetlow = di->ddoffsetlow;
di->dataoffsethigh = di->ddoffsethigh; di->dataoffsethigh = di->ddoffsethigh;
} }
@ -301,13 +427,13 @@ dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
/* allocate transmit descriptor ring, only need ntxd descriptors but it must be aligned */ /* allocate transmit descriptor ring, only need ntxd descriptors but it must be aligned */
if (ntxd) { if (ntxd) {
if (!dma32_alloc(di, DMA_TX)) if (!_dma_alloc(di, DMA_TX))
goto fail; goto fail;
} }
/* allocate receive descriptor ring, only need nrxd descriptors but it must be aligned */ /* allocate receive descriptor ring, only need nrxd descriptors but it must be aligned */
if (nrxd) { if (nrxd) {
if (!dma32_alloc(di, DMA_RX)) if (!_dma_alloc(di, DMA_RX))
goto fail; goto fail;
} }
@ -348,7 +474,7 @@ dma_attach(osl_t *osh, char *name, sb_t *sbh, void *dmaregstx, void *dmaregsrx,
di->rxp_dmah = NULL; di->rxp_dmah = NULL;
/* initialize opsvec of function pointers */ /* initialize opsvec of function pointers */
di->hnddma.di_fn = dma32proc; di->hnddma.di_fn = DMA64_ENAB(di) ? dma64proc : dma32proc;
return ((hnddma_t *)di); return ((hnddma_t *)di);
@ -381,6 +507,34 @@ dma32_dd_upd(dma_info_t *di, dma32dd_t *ddring, ulong pa, uint outidx, uint32 *f
} }
} }
static INLINE void
dma64_dd_upd(dma_info_t *di, dma64dd_t *ddring, ulong pa, uint outidx, uint32 *flags,
uint32 bufcount)
{
uint32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
/* PCI bus with big(>1G) physical address, use address extension */
if ((di->dataoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) {
W_SM(&ddring[outidx].addrlow, BUS_SWAP32(pa + di->dataoffsetlow));
W_SM(&ddring[outidx].addrhigh, BUS_SWAP32(0 + di->dataoffsethigh));
W_SM(&ddring[outidx].ctrl1, BUS_SWAP32(*flags));
W_SM(&ddring[outidx].ctrl2, BUS_SWAP32(ctrl2));
} else {
/* address extension */
uint32 ae;
ASSERT(di->addrext);
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
W_SM(&ddring[outidx].addrlow, BUS_SWAP32(pa + di->dataoffsetlow));
W_SM(&ddring[outidx].addrhigh, BUS_SWAP32(0 + di->dataoffsethigh));
W_SM(&ddring[outidx].ctrl1, BUS_SWAP32(*flags));
W_SM(&ddring[outidx].ctrl2, BUS_SWAP32(ctrl2));
}
}
static bool static bool
_dma32_addrext(osl_t *osh, dma32regs_t *dma32regs) _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs)
{ {
@ -392,6 +546,16 @@ _dma32_addrext(osl_t *osh, dma32regs_t *dma32regs)
return ((w & XC_AE) == XC_AE); return ((w & XC_AE) == XC_AE);
} }
static bool
_dma_alloc(dma_info_t *di, uint direction)
{
if (DMA64_ENAB(di)) {
return dma64_alloc(di, direction);
} else {
return dma32_alloc(di, direction);
}
}
/* !! may be called with core in reset */ /* !! may be called with core in reset */
static void static void
_dma_detach(dma_info_t *di) _dma_detach(dma_info_t *di)
@ -406,12 +570,21 @@ _dma_detach(dma_info_t *di)
ASSERT(di->rxin == di->rxout); ASSERT(di->rxin == di->rxout);
/* free dma descriptor rings */ /* free dma descriptor rings */
if (DMA64_ENAB(di)) {
if (di->txd64)
DMA_FREE_CONSISTENT(di->osh, ((int8*)(uintptr)di->txd64 - di->txdalign),
di->txdalloc, (di->txdpa - di->txdalign), &di->tx_dmah);
if (di->rxd64)
DMA_FREE_CONSISTENT(di->osh, ((int8*)(uintptr)di->rxd64 - di->rxdalign),
di->rxdalloc, (di->rxdpa - di->rxdalign), &di->rx_dmah);
} else {
if (di->txd32) if (di->txd32)
DMA_FREE_CONSISTENT(di->osh, ((int8*)di->txd32 - di->txdalign), DMA_FREE_CONSISTENT(di->osh, ((int8*)(uintptr)di->txd32 - di->txdalign),
di->txdalloc, (di->txdpa - di->txdalign), &di->tx_dmah); di->txdalloc, (di->txdpa - di->txdalign), &di->tx_dmah);
if (di->rxd32) if (di->rxd32)
DMA_FREE_CONSISTENT(di->osh, ((int8*)di->rxd32 - di->rxdalign), DMA_FREE_CONSISTENT(di->osh, ((int8*)(uintptr)di->rxd32 - di->rxdalign),
di->rxdalloc, (di->rxdpa - di->rxdalign), &di->rx_dmah); di->rxdalloc, (di->rxdpa - di->rxdalign), &di->rx_dmah);
}
/* free packet pointer vectors */ /* free packet pointer vectors */
if (di->txp) if (di->txp)
@ -436,7 +609,27 @@ _dma_detach(dma_info_t *di)
static bool static bool
_dma_isaddrext(dma_info_t *di) _dma_isaddrext(dma_info_t *di)
{ {
if (di->d32txregs) if (DMA64_ENAB(di)) {
/* DMA64 supports full 32 bits or 64 bits. AE is always valid */
/* not all tx or rx channel are available */
if (di->d64txregs != NULL) {
if (!_dma64_addrext(di->osh, di->d64txregs)) {
DMA_ERROR(("%s: _dma_isaddrext: DMA64 tx doesn't have AE set\n",
di->name));
ASSERT(0);
}
return TRUE;
} else if (di->d64rxregs != NULL) {
if (!_dma64_addrext(di->osh, di->d64rxregs)) {
DMA_ERROR(("%s: _dma_isaddrext: DMA64 rx doesn't have AE set\n",
di->name));
ASSERT(0);
}
return TRUE;
}
return FALSE;
} else if (di->d32txregs)
return (_dma32_addrext(di->osh, di->d32txregs)); return (_dma32_addrext(di->osh, di->d32txregs));
else if (di->d32rxregs) else if (di->d32rxregs)
return (_dma32_addrext(di->osh, di->d32rxregs)); return (_dma32_addrext(di->osh, di->d32rxregs));
@ -447,6 +640,39 @@ _dma_isaddrext(dma_info_t *di)
static void static void
_dma_ddtable_init(dma_info_t *di, uint direction, ulong pa) _dma_ddtable_init(dma_info_t *di, uint direction, ulong pa)
{ {
if (DMA64_ENAB(di)) {
if ((di->ddoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) {
if (direction == DMA_TX) {
W_REG(di->osh, &di->d64txregs->addrlow, (pa + di->ddoffsetlow));
W_REG(di->osh, &di->d64txregs->addrhigh, di->ddoffsethigh);
} else {
W_REG(di->osh, &di->d64rxregs->addrlow, (pa + di->ddoffsetlow));
W_REG(di->osh, &di->d64rxregs->addrhigh, di->ddoffsethigh);
}
} else {
/* DMA64 32bits address extension */
uint32 ae;
ASSERT(di->addrext);
/* shift the high bit(s) from pa to ae */
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
pa &= ~PCI32ADDR_HIGH;
if (direction == DMA_TX) {
W_REG(di->osh, &di->d64txregs->addrlow, (pa + di->ddoffsetlow));
W_REG(di->osh, &di->d64txregs->addrhigh, di->ddoffsethigh);
SET_REG(di->osh, &di->d64txregs->control, D64_XC_AE,
(ae << D64_XC_AE_SHIFT));
} else {
W_REG(di->osh, &di->d64rxregs->addrlow, (pa + di->ddoffsetlow));
W_REG(di->osh, &di->d64rxregs->addrhigh, di->ddoffsethigh);
SET_REG(di->osh, &di->d64rxregs->control, D64_RC_AE,
(ae << D64_RC_AE_SHIFT));
}
}
} else {
if ((di->ddoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) { if ((di->ddoffsetlow != SB_PCI_DMA) || !(pa & PCI32ADDR_HIGH)) {
if (direction == DMA_TX) if (direction == DMA_TX)
W_REG(di->osh, &di->d32txregs->addr, (pa + di->ddoffsetlow)); W_REG(di->osh, &di->d32txregs->addr, (pa + di->ddoffsetlow));
@ -469,12 +695,16 @@ _dma_ddtable_init(dma_info_t *di, uint direction, ulong pa)
SET_REG(di->osh, &di->d32rxregs->control, RC_AE, ae <<RC_AE_SHIFT); SET_REG(di->osh, &di->d32rxregs->control, RC_AE, ae <<RC_AE_SHIFT);
} }
} }
}
} }
static void static void
_dma_fifoloopbackenable(dma_info_t *di) _dma_fifoloopbackenable(dma_info_t *di)
{ {
DMA_TRACE(("%s: dma_fifoloopbackenable\n", di->name)); DMA_TRACE(("%s: dma_fifoloopbackenable\n", di->name));
if (DMA64_ENAB(di))
OR_REG(di->osh, &di->d64txregs->control, D64_XC_LE);
else
OR_REG(di->osh, &di->d32txregs->control, XC_LE); OR_REG(di->osh, &di->d32txregs->control, XC_LE);
} }
@ -489,9 +719,15 @@ _dma_rxinit(dma_info_t *di)
di->rxin = di->rxout = 0; di->rxin = di->rxout = 0;
/* clear rx descriptor ring */ /* clear rx descriptor ring */
BZERO_SM((void *)di->rxd32, (di->nrxd * sizeof(dma32dd_t))); if (DMA64_ENAB(di)) {
BZERO_SM((void *)(uintptr)di->rxd64, (di->nrxd * sizeof(dma64dd_t)));
_dma_rxenable(di); _dma_rxenable(di);
_dma_ddtable_init(di, DMA_RX, di->rxdpa); _dma_ddtable_init(di, DMA_RX, di->rxdpa);
} else {
BZERO_SM((void *)(uintptr)di->rxd32, (di->nrxd * sizeof(dma32dd_t)));
_dma_rxenable(di);
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
}
} }
static void static void
@ -499,6 +735,10 @@ _dma_rxenable(dma_info_t *di)
{ {
DMA_TRACE(("%s: dma_rxenable\n", di->name)); DMA_TRACE(("%s: dma_rxenable\n", di->name));
if (DMA64_ENAB(di))
W_REG(di->osh, &di->d64rxregs->control,
((di->rxoffset << D64_RC_RO_SHIFT) | D64_RC_RE));
else
W_REG(di->osh, &di->d32rxregs->control, ((di->rxoffset << RC_RO_SHIFT) | RC_RE)); W_REG(di->osh, &di->d32rxregs->control, ((di->rxoffset << RC_RO_SHIFT) | RC_RE));
} }
@ -602,16 +842,28 @@ _dma_rxfill(dma_info_t *di)
/* reset flags for each descriptor */ /* reset flags for each descriptor */
flags = 0; flags = 0;
if (DMA64_ENAB(di)) {
if (rxout == (di->nrxd - 1))
flags = D64_CTRL1_EOT;
dma64_dd_upd(di, di->rxd64, pa, rxout, &flags, di->rxbufsize);
} else {
if (rxout == (di->nrxd - 1)) if (rxout == (di->nrxd - 1))
flags = CTRL_EOT; flags = CTRL_EOT;
dma32_dd_upd(di, di->rxd32, pa, rxout, &flags, di->rxbufsize); dma32_dd_upd(di, di->rxd32, pa, rxout, &flags, di->rxbufsize);
}
rxout = NEXTRXD(rxout); rxout = NEXTRXD(rxout);
} }
di->rxout = rxout; di->rxout = rxout;
/* update the chip lastdscr pointer */ /* update the chip lastdscr pointer */
if (DMA64_ENAB(di)) {
W_REG(di->osh, &di->d64rxregs->ptr, I2B(rxout, dma64dd_t));
} else {
W_REG(di->osh, &di->d32rxregs->ptr, I2B(rxout, dma32dd_t)); W_REG(di->osh, &di->d32rxregs->ptr, I2B(rxout, dma32dd_t));
}
} }
/* like getnexttxp but no reclaim */ /* like getnexttxp but no reclaim */
@ -623,7 +875,11 @@ _dma_peeknexttxp(dma_info_t *di)
if (di->ntxd == 0) if (di->ntxd == 0)
return (NULL); return (NULL);
if (DMA64_ENAB(di)) {
end = B2I(R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_CD_MASK, dma64dd_t);
} else {
end = B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK, dma32dd_t); end = B2I(R_REG(di->osh, &di->d32txregs->status) & XS_CD_MASK, dma32dd_t);
}
for (i = di->txin; i != end; i = NEXTTXD(i)) for (i = di->txin; i != end; i = NEXTTXD(i))
if (di->txp[i]) if (di->txp[i])
@ -654,7 +910,11 @@ _dma_getnextrxp(dma_info_t *di, bool forceall)
if (di->nrxd == 0) if (di->nrxd == 0)
return (NULL); return (NULL);
if (DMA64_ENAB(di)) {
return dma64_getnextrxp(di, forceall);
} else {
return dma32_getnextrxp(di, forceall); return dma32_getnextrxp(di, forceall);
}
} }
static void static void
@ -686,7 +946,7 @@ _dma_counterreset(dma_info_t *di)
/* get the address of the var in order to change later */ /* get the address of the var in order to change later */
static uintptr static uintptr
_dma_getvar(dma_info_t *di, char *name) _dma_getvar(dma_info_t *di, const char *name)
{ {
if (!strcmp(name, "&txavail")) if (!strcmp(name, "&txavail"))
return ((uintptr) &(di->hnddma.txavail)); return ((uintptr) &(di->hnddma.txavail));
@ -717,7 +977,7 @@ dma32_txinit(dma_info_t *di)
di->hnddma.txavail = di->ntxd - 1; di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */ /* clear tx descriptor ring */
BZERO_SM((void *)di->txd32, (di->ntxd * sizeof(dma32dd_t))); BZERO_SM((void *)(uintptr)di->txd32, (di->ntxd * sizeof(dma32dd_t)));
W_REG(di->osh, &di->d32txregs->control, XC_XE); W_REG(di->osh, &di->d32txregs->control, XC_XE);
_dma_ddtable_init(di, DMA_TX, di->txdpa); _dma_ddtable_init(di, DMA_TX, di->txdpa);
} }
@ -806,7 +1066,7 @@ dma32_alloc(dma_info_t *di, uint direction)
} }
di->txd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN); di->txd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN);
di->txdalign = (uint)((int8*)di->txd32 - (int8*)va); di->txdalign = (uint)((int8*)(uintptr)di->txd32 - (int8*)va);
di->txdpa += di->txdalign; di->txdpa += di->txdalign;
di->txdalloc = size; di->txdalloc = size;
ASSERT(ISALIGNED((uintptr)di->txd32, D32RINGALIGN)); ASSERT(ISALIGNED((uintptr)di->txd32, D32RINGALIGN));
@ -817,7 +1077,7 @@ dma32_alloc(dma_info_t *di, uint direction)
return FALSE; return FALSE;
} }
di->rxd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN); di->rxd32 = (dma32dd_t *) ROUNDUP((uintptr)va, D32RINGALIGN);
di->rxdalign = (uint)((int8*)di->rxd32 - (int8*)va); di->rxdalign = (uint)((int8*)(uintptr)di->rxd32 - (int8*)va);
di->rxdpa += di->rxdalign; di->rxdpa += di->rxdalign;
di->rxdalloc = size; di->rxdalloc = size;
ASSERT(ISALIGNED((uintptr)di->rxd32, D32RINGALIGN)); ASSERT(ISALIGNED((uintptr)di->rxd32, D32RINGALIGN));
@ -1134,6 +1394,461 @@ dma32_txrotate(dma_info_t *di)
W_REG(di->osh, &di->d32txregs->ptr, I2B(di->txout, dma32dd_t)); W_REG(di->osh, &di->d32txregs->ptr, I2B(di->txout, dma32dd_t));
} }
/* 64 bits DMA functions */
#ifdef BCMDMA64
static void
dma64_txinit(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txinit\n", di->name));
if (di->ntxd == 0)
return;
di->txin = di->txout = 0;
di->hnddma.txavail = di->ntxd - 1;
/* clear tx descriptor ring */
BZERO_SM((void *)(uintptr)di->txd64, (di->ntxd * sizeof(dma64dd_t)));
W_REG(di->osh, &di->d64txregs->control, D64_XC_XE);
_dma_ddtable_init(di, DMA_TX, di->txdpa);
}
static bool
dma64_txenabled(dma_info_t *di)
{
uint32 xc;
/* If the chip is dead, it is not enabled :-) */
xc = R_REG(di->osh, &di->d64txregs->control);
return ((xc != 0xffffffff) && (xc & D64_XC_XE));
}
static void
dma64_txsuspend(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txsuspend\n", di->name));
if (di->ntxd == 0)
return;
OR_REG(di->osh, &di->d64txregs->control, D64_XC_SE);
}
static void
dma64_txresume(dma_info_t *di)
{
DMA_TRACE(("%s: dma_txresume\n", di->name));
if (di->ntxd == 0)
return;
AND_REG(di->osh, &di->d64txregs->control, ~D64_XC_SE);
}
static bool
dma64_txsuspended(dma_info_t *di)
{
return (di->ntxd == 0) || ((R_REG(di->osh, &di->d64txregs->control) & D64_XC_SE)
== D64_XC_SE);
}
static void
dma64_txreclaim(dma_info_t *di, bool forceall)
{
void *p;
DMA_TRACE(("%s: dma_txreclaim %s\n", di->name, forceall ? "all" : ""));
while ((p = dma64_getnexttxp(di, forceall)))
PKTFREE(di->osh, p, TRUE);
}
static bool
dma64_txstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK) == D64_XS0_XS_STOPPED);
}
static bool
dma64_rxstopped(dma_info_t *di)
{
return ((R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_RS_MASK) == D64_RS0_RS_STOPPED);
}
static bool
dma64_alloc(dma_info_t *di, uint direction)
{
uint size;
uint ddlen;
uint32 alignbytes;
void *va;
ddlen = sizeof(dma64dd_t);
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
alignbytes = di->dma64align;
if (!ISALIGNED(DMA_CONSISTENT_ALIGN, alignbytes))
size += alignbytes;
if (direction == DMA_TX) {
if ((va = DMA_ALLOC_CONSISTENT(di->osh, size, &di->txdpa, &di->tx_dmah)) == NULL) {
DMA_ERROR(("%s: dma_attach: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
di->name));
return FALSE;
}
di->txd64 = (dma64dd_t *) ROUNDUP((uintptr)va, alignbytes);
di->txdalign = (uint)((int8*)(uintptr)di->txd64 - (int8*)va);
di->txdpa += di->txdalign;
di->txdalloc = size;
ASSERT(ISALIGNED((uintptr)di->txd64, alignbytes));
} else {
if ((va = DMA_ALLOC_CONSISTENT(di->osh, size, &di->rxdpa, &di->rx_dmah)) == NULL) {
DMA_ERROR(("%s: dma_attach: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
di->name));
return FALSE;
}
di->rxd64 = (dma64dd_t *) ROUNDUP((uintptr)va, alignbytes);
di->rxdalign = (uint)((int8*)(uintptr)di->rxd64 - (int8*)va);
di->rxdpa += di->rxdalign;
di->rxdalloc = size;
ASSERT(ISALIGNED((uintptr)di->rxd64, alignbytes));
}
return TRUE;
}
static bool
dma64_txreset(dma_info_t *di)
{
uint32 status;
if (di->ntxd == 0)
return TRUE;
/* suspend tx DMA first */
W_REG(di->osh, &di->d64txregs->control, D64_XC_SE);
SPINWAIT(((status = (R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK)) !=
D64_XS0_XS_DISABLED) &&
(status != D64_XS0_XS_IDLE) &&
(status != D64_XS0_XS_STOPPED),
10000);
W_REG(di->osh, &di->d64txregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK)) !=
D64_XS0_XS_DISABLED),
10000);
/* wait for the last transaction to complete */
OSL_DELAY(300);
return (status == D64_XS0_XS_DISABLED);
}
static bool
dma64_rxidle(dma_info_t *di)
{
DMA_TRACE(("%s: dma_rxidle\n", di->name));
if (di->nrxd == 0)
return TRUE;
return ((R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_CD_MASK) ==
R_REG(di->osh, &di->d64rxregs->ptr));
}
static bool
dma64_rxreset(dma_info_t *di)
{
uint32 status;
if (di->nrxd == 0)
return TRUE;
W_REG(di->osh, &di->d64rxregs->control, 0);
SPINWAIT(((status = (R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_RS_MASK)) !=
D64_RS0_RS_DISABLED),
10000);
return (status == D64_RS0_RS_DISABLED);
}
static bool
dma64_rxenabled(dma_info_t *di)
{
uint32 rc;
rc = R_REG(di->osh, &di->d64rxregs->control);
return ((rc != 0xffffffff) && (rc & D64_RC_RE));
}
static bool
dma64_txsuspendedidle(dma_info_t *di)
{
if (di->ntxd == 0)
return TRUE;
if (!(R_REG(di->osh, &di->d64txregs->control) & D64_XC_SE))
return 0;
if ((R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_XS_MASK) == D64_XS0_XS_IDLE)
return 1;
return 0;
}
/* !! tx entry routine */
static int
dma64_txfast(dma_info_t *di, void *p0, bool commit)
{
void *p, *next;
uchar *data;
uint len;
uint txout;
uint32 flags = 0;
uint32 pa;
DMA_TRACE(("%s: dma_txfast\n", di->name));
txout = di->txout;
/*
* Walk the chain of packet buffers
* allocating and initializing transmit descriptor entries.
*/
for (p = p0; p; p = next) {
data = PKTDATA(di->osh, p);
len = PKTLEN(di->osh, p);
next = PKTNEXT(di->osh, p);
/* return nonzero if out of tx descriptors */
if (NEXTTXD(txout) == di->txin)
goto outoftxd;
if (len == 0)
continue;
/* get physical address of buffer start */
pa = (uint32) DMA_MAP(di->osh, data, len, DMA_TX, p);
flags = 0;
if (p == p0)
flags |= D64_CTRL1_SOF;
if (next == NULL)
flags |= (D64_CTRL1_IOC | D64_CTRL1_EOF);
if (txout == (di->ntxd - 1))
flags |= D64_CTRL1_EOT;
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
ASSERT(di->txp[txout] == NULL);
txout = NEXTTXD(txout);
}
/* if last txd eof not set, fix it */
if (!(flags & D64_CTRL1_EOF))
W_SM(&di->txd64[PREVTXD(txout)].ctrl1,
BUS_SWAP32(flags | D64_CTRL1_IOC | D64_CTRL1_EOF));
/* save the packet */
di->txp[PREVTXD(txout)] = p0;
/* bump the tx descriptor index */
di->txout = txout;
/* kick the chip */
if (commit)
W_REG(di->osh, &di->d64txregs->ptr, I2B(txout, dma64dd_t));
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return (0);
outoftxd:
DMA_ERROR(("%s: dma_txfast: out of txds\n", di->name));
PKTFREE(di->osh, p0, TRUE);
di->hnddma.txavail = 0;
di->hnddma.txnobuf++;
return (-1);
}
/*
* Reclaim next completed txd (txds if using chained buffers) and
* return associated packet.
* If 'force' is true, reclaim txd(s) and return associated packet
* regardless of the value of the hardware "curr" pointer.
*/
static void *
dma64_getnexttxp(dma_info_t *di, bool forceall)
{
uint start, end, i;
void *txp;
DMA_TRACE(("%s: dma_getnexttxp %s\n", di->name, forceall ? "all" : ""));
if (di->ntxd == 0)
return (NULL);
txp = NULL;
start = di->txin;
if (forceall)
end = di->txout;
else
end = B2I(R_REG(di->osh, &di->d64txregs->status0) & D64_XS0_CD_MASK, dma64dd_t);
if ((start == 0) && (end > di->txout))
goto bogus;
for (i = start; i != end && !txp; i = NEXTTXD(i)) {
DMA_UNMAP(di->osh, (BUS_SWAP32(R_SM(&di->txd64[i].addrlow)) - di->dataoffsetlow),
(BUS_SWAP32(R_SM(&di->txd64[i].ctrl2)) & D64_CTRL2_BC_MASK),
DMA_TX, di->txp[i]);
W_SM(&di->txd64[i].addrlow, 0xdeadbeef);
W_SM(&di->txd64[i].addrhigh, 0xdeadbeef);
txp = di->txp[i];
di->txp[i] = NULL;
}
di->txin = i;
/* tx flow control */
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
return (txp);
bogus:
/*
DMA_ERROR(("dma_getnexttxp: bogus curr: start %d end %d txout %d force %d\n",
start, end, di->txout, forceall));
*/
return (NULL);
}
static void *
dma64_getnextrxp(dma_info_t *di, bool forceall)
{
uint i;
void *rxp;
/* if forcing, dma engine must be disabled */
ASSERT(!forceall || !dma64_rxenabled(di));
i = di->rxin;
/* return if no packets posted */
if (i == di->rxout)
return (NULL);
/* ignore curr if forceall */
if (!forceall &&
(i == B2I(R_REG(di->osh, &di->d64rxregs->status0) & D64_RS0_CD_MASK, dma64dd_t)))
return (NULL);
/* get the packet pointer that corresponds to the rx descriptor */
rxp = di->rxp[i];
ASSERT(rxp);
di->rxp[i] = NULL;
/* clear this packet from the descriptor ring */
DMA_UNMAP(di->osh, (BUS_SWAP32(R_SM(&di->rxd64[i].addrlow)) - di->dataoffsetlow),
di->rxbufsize, DMA_RX, rxp);
W_SM(&di->rxd64[i].addrlow, 0xdeadbeef);
W_SM(&di->rxd64[i].addrhigh, 0xdeadbeef);
di->rxin = NEXTRXD(i);
return (rxp);
}
static bool
_dma64_addrext(osl_t *osh, dma64regs_t *dma64regs)
{
uint32 w;
OR_REG(osh, &dma64regs->control, D64_XC_AE);
w = R_REG(osh, &dma64regs->control);
AND_REG(osh, &dma64regs->control, ~D64_XC_AE);
return ((w & D64_XC_AE) == D64_XC_AE);
}
/*
* Rotate all active tx dma ring entries "forward" by (ActiveDescriptor - txin).
*/
static void
dma64_txrotate(dma_info_t *di)
{
uint ad;
uint nactive;
uint rot;
uint old, new;
uint32 w;
uint first, last;
ASSERT(dma64_txsuspendedidle(di));
nactive = _dma_txactive(di);
ad = B2I((R_REG(di->osh, &di->d64txregs->status1) & D64_XS1_AD_MASK), dma64dd_t);
rot = TXD(ad - di->txin);
ASSERT(rot < di->ntxd);
/* full-ring case is a lot harder - don't worry about this */
if (rot >= (di->ntxd - nactive)) {
DMA_ERROR(("%s: dma_txrotate: ring full - punt\n", di->name));
return;
}
first = di->txin;
last = PREVTXD(di->txout);
/* move entries starting at last and moving backwards to first */
for (old = last; old != PREVTXD(first); old = PREVTXD(old)) {
new = TXD(old + rot);
/*
* Move the tx dma descriptor.
* EOT is set only in the last entry in the ring.
*/
w = BUS_SWAP32(R_SM(&di->txd64[old].ctrl1)) & ~D64_CTRL1_EOT;
if (new == (di->ntxd - 1))
w |= D64_CTRL1_EOT;
W_SM(&di->txd64[new].ctrl1, BUS_SWAP32(w));
w = BUS_SWAP32(R_SM(&di->txd64[old].ctrl2));
W_SM(&di->txd64[new].ctrl2, BUS_SWAP32(w));
W_SM(&di->txd64[new].addrlow, R_SM(&di->txd64[old].addrlow));
W_SM(&di->txd64[new].addrhigh, R_SM(&di->txd64[old].addrhigh));
/* zap the old tx dma descriptor address field */
W_SM(&di->txd64[old].addrlow, BUS_SWAP32(0xdeadbeef));
W_SM(&di->txd64[old].addrhigh, BUS_SWAP32(0xdeadbeef));
/* move the corresponding txp[] entry */
ASSERT(di->txp[new] == NULL);
di->txp[new] = di->txp[old];
di->txp[old] = NULL;
}
/* update txin and txout */
di->txin = ad;
di->txout = TXD(di->txout + rot);
di->hnddma.txavail = di->ntxd - NTXDACTIVE(di->txin, di->txout) - 1;
/* kick the chip */
W_REG(di->osh, &di->d64txregs->ptr, I2B(di->txout, dma64dd_t));
}
#endif /* BCMDMA64 */
uint uint
dma_addrwidth(sb_t *sbh, void *dmaregs) dma_addrwidth(sb_t *sbh, void *dmaregs)
@ -1143,6 +1858,27 @@ dma_addrwidth(sb_t *sbh, void *dmaregs)
osh = sb_osh(sbh); osh = sb_osh(sbh);
if (DMA64_CAP) {
/* DMA engine is 64-bit capable */
if (((sb_coreflagshi(sbh, 0, 0) & SBTMH_DMA64) == SBTMH_DMA64)) {
/* backplane are 64 bits capable */
#if 0
if (sb_backplane64(sbh))
/* If bus is System Backplane or PCIE then we can access 64-bits */
if ((BUSTYPE(sbh->bustype) == SB_BUS) ||
((BUSTYPE(sbh->bustype) == PCI_BUS) &&
sbh->buscoretype == SB_PCIE))
return (DMADDRWIDTH_64);
#endif
/* DMA64 is always 32 bits capable, AE is always TRUE */
#ifdef BCMDMA64
ASSERT(_dma64_addrext(osh, (dma64regs_t *)dmaregs));
#endif
return (DMADDRWIDTH_32);
}
}
/* Start checking for 32-bit / 30-bit addressing */ /* Start checking for 32-bit / 30-bit addressing */
dma32regs = (dma32regs_t *)dmaregs; dma32regs = (dma32regs_t *)dmaregs;